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Abstract
During the period of 1/1/2008 - 6/30/2008, we performed the following studies on radar

sensor network:

1. favor weak fuzzy logic systems: theory and applications to threat assessment in disparate
sensor networks;

2. cognitive radar sensor networks: a human-inspired information integration and fuzzy logic
system-based approach;

3. wireless channel modeling in foliage environment using UWB radar versus narrowband
radar;

4. tri-phase coded waveforms: design and applications to radar systems.

1 Favor Weak Fuzzy Logic Systems: Theory and Applications to
Threat Assessment

In current and future DoD operational environments, such as the Global War on Terrorism (GWOT)
and the Maritime Domain Awareness (MDA), there is a need to exploit and integrate heterogeneous
sensor networks based information from multiple sensors across a variety of modalities, media types
including radar, video imagery (static and dynamic), audio (speech), acoustic stimuli, IR, text,
as well as signals from novel chemical and biological sensors. Unfortunately, current DoD tactical
sensor systems are not networked to each other or to small expeditionary warfighters units operating
on the battlefield. A divide exists between receiving timely and useful tactical sensor data and
the delivery of actionable intelligence to the Marine Expeditionary Force (MEF) and subordinate
expeditionary force units. Moreover, software applications do not exist to automatically translate
and fuse data into tactical situational understanding, indications and warning (I&W). Algorithms
do not exist to fuse tactical data (level 2 or 3 fusion for a GWOT asymmetric environment) in the
expeditionary forces tactical environment using tactically available computing capabilities. This
need is also motivated by the fact that humans display a remarkable capability to perform situation
understanding despite noisy sensory signals and conflicting inputs. Humans are adept at network
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visualization, and at understanding subtle implications among the network connections. To date,
however, human's innate ability to process and integrate information from disparate, network-based
sources for situational understanding has not translated well to automated systems.

Motivated by the above challenges, in [1], we applied human information integration mechanisms
to threat assessment in heterogeneous sensor networks. Humans use multiple sources of sensory
information to estimate environmental properties and has innate ability to integrate information
from heterogeneous data sources. How the multi-sensory and multimodal information are integrated
in human brain? There is consensus that it depends on the prefrontal cortex (PFC). The PFC has
top-down control (favor weak) and rule-based mechanisms, and we propose to incorporate the favor
weak mechanism into rule-based fuzzy logic systems (FLS) via using upper and lower membership
functions. The inference engine of favor weak fuzzzy logic system is proposed under three different
categories based on fuzzifiers. We observe that the favor weak FLS is a special type-1 FLS which
is embeded in an interval type-2 FLS, so its much simpler in computing than an interval type-2
FLS. We applied the favor weak FLS to situation understanding based on heterogeneous sensor
network, and it shows that our favor weak fuzzy logic system has clear advantage comparing to
the type-1 FLS. The favor weak FLS can increase the probability of threat detection, and provides
timely I&W.

2 Cognitive Radar Sensor Networks: A Human-Inspired Informa-
tion Integration and Fuzzy Logic System-Based Approach

Inspired by human's innate ability to process and integrate information from network-based sources,
we applied [2] [4] human-inspired information integration mechanisms to target detection in cognitive
radar sensor network. Humans' information integration mechanisms have been modelled using
maximum-likelihood estimation (MLE) or soft-max approaches. In [2][4], we applied these two
algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT)
was used to process the integrated data from MLE or soft-max. We applied fuzzy logic system
(FLS) to automatic target detection based on the AC power values from DCT. Simulation results
showed that our MLE-DCT-FLS and soft-max-DCT-FLS approaches performed very well in the
radar sensor network target detection, whereas the existing 2-D construction algorithm didn't work
in this study.

3 Wireless Channel Modeling in Foliage Environment: UWB ver-
sus Narrowband

In [3], we studied the wireless channel modeling in foliage environment, a rich scattering and time-
varying environment, based on extensive data collected using UWB and narrowband (200MHz
and 400MHz) radars. We applied two approaches to the wireless channel modeling: Saleh and
Valenzuela (S-V) method for UWB channel modeling and CLEAN method for narrowband and
UWB channel modeling. We validated that UWB echo signals (within a burst) don't hold self-
similarity, which means the future signals can't be forecasted based on the received signals and
channel modeling is necessary from statistical point of view. Based on the S-V method for UWB
channel modeling, in foliage UWB channel, the multi-path contributions arrive at the receiver are
grouped into clusters. The time of arrival of clusters can be modeled as a Poisson arrival process,
while within each cluster, subsequent multipath contributions or rays also arrive according to a
Poisson process. At different field (near field, medium field, and far field), we observe that the
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Poisson process parameters are quite different. We also observe that the amplitude of channel
coefficient at each path follows Rician distribution for medium and far field, and it's non-stationary
for paths from near field (one of two Rician distributions), and these observations are quite different
with the IEEE indoor UWB channel model and S-V indoor channel model. Based on the CLEAN
method, the narrowband (200MHz and 400MHz) and UWB channel impulse responses have many
similarities: both can be modeled as linear time-variant filter channel.

In [5][6], we studied the statistical modeling for outdoor non line-of-sight (NLOS) channel
in rich scattering and time-varying foliage environment based on extensive data collected using
both narrowband and ultra-wideband (UWB) radars. The multi-path contributions arrive at the
receiver are grouped into clusters. The time of arrival of clusters can be modeled as a Poisson arrival
process, while within each cluster, subsequent multipath contributions or rays also arrive according
to a Poisson process. However, the parameters are quite different along with the frequency. We also
observe that the amplitude of channel coecient at each path can be more accurately characterized
by log-logistic distribution (LLD) other than log-normal, Weibull or Rayleigh due to the best
goodness-of-fit and smallest root-mean-square (RMS).

4 Tri-Phase Coded Waveforms: Design and Applications to Radar
Systems

A phase coded waveform has a constant RF frequency, but an absolute phase that is switched
between one of N fixed values at regular intervals within the pulse length. In this project, we
proposed two tri-phase coded waveform (N = 3) design methods.

In [7], we presented [7] the definition and properties of ZCZ sequence-pair set based on zero cor-
relation zone (ZCZ) concept, and proposed to use the perfect punctured sequence-pair together with
Hadamard matrix in the zero correlation zone to construct the perfect punctured ZCZ sequence-
pair set for tri-phase coded waveform design. According to performance analysis, perfect punctured
ZCZ sequence-pair set has good autocorrelation and cross correlation properties when doppler shift
is not large. The radar target detection system simulation results also show that perfect punc-
tured ZCZ sequence-pair outperforms other conventional pulse compression codes, such as the well
known polyphase codeP4 code. As a result, perfect punctured ZCZ sequence-pair set can be good
candidate for pulse compression code.

In [8], we proposed new code punctured binary sequence-pair and applied it to tri-phase coded
waveforms. The definitions and the autocorrelation properties of the proposed code are given.
Doppler shift performance is also investigated. The significant advantages of punctured binary
sequence-pair over conventional pulse compression codes, such as the widely used Barker codes, are
zero autocorrelation sidelobes and the longer length of the code which can be as long as 31 so far.
In the radar target detection system simulation, punctured binary sequencepair also outperforms
other conventional pulse compression codes. Therefore, our proposed code can be used as one of
the candidates for pulse compression code.
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Abstract

Humans use multiple sources of sensory information to estimate environmental proper-

ties and has innate ability to integrate information from heterogeneous data sources. How

the multi-sensory and multimodal information are integrated in human brain? There is

consensus that it depends on the prefrontal cortex (PFC). The PFC has top-down control

(favor weak) and rule-based mechanisms, and we propose to incorporate the favor weak

mechanism into rule-based fuzzy logic systems (FLS) via using upper and lower membership

functions. The inference engine of favor weak fuzzzy logic system is proposed under three

different categories based on fuzzifiers. We observe that the favor weak FLS is a special

type-1 FLS which is embeded in an interval type-2 FLS, so it's much simpler in computing

than an interval type-2 FLS. We apply the favor weak FLS to situation understanding

based on heterogeneous sensor network, and it shows that our favor weak fuzzy logic sys-

tem has clear advantage comparing to the type-1 FLS. The favor weak FLS can increase

the probability of threat detection, and provides timely indication & warning (I&W).

Index Terms : Fuzzy logic systems, prefrontal cortex (PFC), favor weak, upper and lower

membership functions, situation understanding, heterogeneous sensor networks.
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1 Introduction and Motivation

Humans use multiple sources of sensory information to estimate environmental properties. For

example, the eyes and hands both provide relevant information about an objects shape. The

eyes estimate shape using binocular disparity, perspective projection, etc. The hands supply

haptic shape information by means of tactile and proprioceptive cues. Combining informa-

tion across cues can improve estimation of object properties but may come at a cost:

loss of single-cue information. Recent studies [12] showed that single-cue information is indeed

lost when cues from within the same sensory modality (e.g., disparity and texture gradients

in vision) are combined, but not when different modalities (vision and haptics) are

combined. In another study on human [7], gaze shifts are coordinated movements of the eyes

(eyes-re-head) and head (head-re-space) that rapidly reorient the visual axis (eyes-re-space) to

a target of interest. Reaction latencies for gaze shifts to combined auditory and visual stimuli

presented in close spatial and temporal register are less than those to either stimulus

presented alone, suggesting that the integration of multisensory information may play an

important role in forming appropriate motor behaviors. These studies demonstrate that human

has innate ability to integrate information from heterogeneous data sources and multi-sensory

and multimodal information integration has clear advantage.

In this paper, as a product of multidisciplinary collaborative research, we incorporate hu-

man brain mechanisms to a new fuzzy logic system design and apply it to situation under-

standing based on heterogeneous sensor network. A heterogeneous sensor network consists of

multiple networked sensors with different modality (video, audio, acoustic, radar, etc), and

such networks are necessary in different applications. For example, in an emergency natural

disaster scenario, information integration for first responders is critical for search and rescue.

Besides, the first responders need to be situation-aware. Danger may appear anywhere at

any time, therefore, first responders must monitor a large area continuously in order to iden-

2
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tify potential danger and take actions. Due to the dynamic and complex nature of natural

disaster, some victims may not be found with a single type of sensor modality, for example,

image/video sensors can't be used to find a buried/foleage victim, UWB radar sensors need to

be used for penetrating the ground or sense-through-wall, and acoustic sensors are needed to

collect the voice from victims. Similarly, some potential dangers may not be identified using

a single modality sensor. More modalities are required to search victims and identify poten-

tial dangers and that means large-scale Heterogeneous Sensor Networks (HSN) are needed for

search, rescue, and situation awareness. However, information integration algorithms (espe-

cially for situation awareness) for heterogeneous sensor networks don't exist. Motivated by the

above challenges, we study human-inspired information integration for heterogeneous sensor

networks.

The remaining of the paper is organized as follows. In Section 2, we present the heteroge-

neous information integration in Human brain and challenges to fuzzy logic system design. In

Section 3, we give an overview on upper and lower membership design and describe how it can

be used to the new fuzzy logic system design. In Section 4, we present the inference engine

for favor weak fuzzy logic system, and its relations with the interval type-2 fuzzy logic systems

are described in Section 5. The application to situation understanding based on heterogeneous

sensor network is presented in Section 6. Section 7 concludes this paper.

2 Heterogeneous Information Integration in Human Brain and

Challenges to Fuzzy Logic System Design

One of the great mysteries of the brain is cognitive control. How can the interactions between

millions of neurons result in behavior that is coordinated and appears willful and voluntary?

There is consensus that it depends on the prefrontal cortex (PFC) [31][35]. A schematic dia-

gram of some of the extrinsic and intrinsic connections of the PFC is depicted in Fig. 1 [31].

3
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Many PFC areas receive converging inputs from at least two sensory modalities [4][15]. For

example, the dorsolateral (DL) (areas 8, 9, and 46) and ventrolateral (12 and 45) PFC both

receive projections from visual, auditory, and somatosensory cortex. Furthermore, the PFC

is connected with other cortical regions that are themselves sites of multimodal convergence.

Many PFC areas (9, 12, 46, and 45) receive inputs from the rostral superior temporal sul-

cus, which has neurons with bimodal or trimodal (visual, auditory, and somatosensory) re-

sponses [1][36]. The arcuate sulcus region (areas 8 and 45) and area 12 seem to be particularly

multimodal. They contain zones that receive overlapping inputs from three sensory modalities

[36]. Observe, for example, that mid-dorsal area 9 directly processes and integrates visual,

auditory, and multimodal information.

2.1 PFC Top-Down Control (Favor Weak) and Rule-Based Mechanisms

According to [31][35], the PFC is modulatory rather than transmissive. That is, the pathway

from input to output does not "run through" the PFC. Instead, the PFC guides activity

flow along task-relevant pathways in more posterior and/or subcortical areas. The PFC is

important when "top-down" processing is needed; that is, when behavior must be guided by

internal states or intentions. The PFC is critical in situations when the mappings between

sensory inputs, thoughts, and actions either are weakly established relative to other existing

ones or are rapidly changing. This is when we need to use the "rules of the game," internal

representations of goals and the means to achieve them [31]. Several investigators have argued

that this is a cardinal function of the PFC [6][37][11][41][30]. The top-down control and favor

weak mechanism can be illustrated using the Stroop task Wisconsin card sort task (WCST).

In the Stroop task [40][27], subjects either read words or name the color in which they

are written. To perform this task, subjects must selectively attend to one attribute. This is

especially so when naming the color of a conflict stimulus (e.g. the word GREEN displayed in

red), because there is a strong prepotent tendency to read the word ("green"), which competes

4
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with the response to the color ("red"). This illustrates one of the most fundamental aspects

of cognitive control and goal-directed behavior: the ability to select a weaker, task-relevant

response (or source of information) in the face of competition from an otherwise stronger, but

task-irrelevant one. Patients with frontal impairment have difficulty with this task, especially

when the instructions vary frequently, which suggests that they have difficulty adhering to the

goal of the task or its rules in the face of a competing stronger (i.e. more salient or habitual)

response [31]. Similar findings are evident in the WCST [32]. Subjects are instructed to sort

cards according to the shape, color, or number of symbols appearing on them and the sorting

rule varies periodically. Thus, any given card can be associated with several possible actions,

no single stimulus-response mapping will work, and the correct one changes and is dictated by

whichever rule is currently in effect. Humans with PFC damage show stereotyped deficits in

the WCST. They are able to acquire the initial mapping without much difficulty but are unable

to adapt their behavior when the rule varies [32]. Monkeys with PFC lesions are impaired in

an analog of this task and in others when they must switch between different rules [31].

The Stroop task, naming the color of a conflict stimulus, and WCST [32] are variously

described as tapping the cognitive functions of either selective attention, behavioral inhi-

bition, top-down control, working memory, or rule-based or goal-directed behavior

[31]. As suggested by Desimone and Duncan [9], selective attention and behavioral inhibition

are two sides of the same coin: attention is the effect of biasing competition in favor of task-

relevant information, and inhibition is the consequence that this has for the irrelevant informa-

tion. In this project, we will study human brain top-down control and rule-based mechanisms

inspired information integration. In current HSN design, the clusterhead only serves a "trans-

missive" (data collection and relay to gateway) function. In this project, the HSN clusterhead

will also provide a "modulatory" function, i.e., multimodal information integration. In natural

disaster or terrorist attack recovery, the most dangerous potential threat factors (stimuli) are

weak or hidden but are highly correlated with the situation understanding task, and of course,

5
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they are time sensitive (rapidly changing), which indicates that the PFC "top-down" control

mechanism can be applied to HSN-based situation understanding.

The PFC top-down control signals favor weak (but task-relevant) stimulus-response map-

pings when they are in competition with more habitual, stronger ones (as in the Stroop task,

where the word GREEN is stronger and the color red is weak), especially when flexibility is

needed (such as in the WCST) [31]. Moreover, all of the PFC neural mechanisms depend on the

representation of goals and rules in the form of patterns of activity in the PFC, which configure

processing in other parts of the brain in accordance with current task demands [31][35]. Such

mechanisms motivate us to heavily revisit a rule-based approach: fuzzy logic systems (FLS),

mimicking the rule-based PFC neural mechanism, and subsequently applying it to HSN-based

situation awareness.

2.2 Overview of Fuzzy Logic Systems and Its Shortfall

The current type-1 FLS designs doesn't have "favor strong or favor weak control". In a type-1

FLS with a rule base of M rules, in which each rule has p antecedents, let the lth rule be

denoted by RL, where Rl: IF x, is F1, and x2 is F1, and, ... , and x is Fp THEN y is G1.

The membership function, /AB1 (y), of a fired rule can be expressed by the following sup-stax

composition [29]:

AB'(Y) = SUPxEA- [PA (X) * PA1-B1(x,y)] (1)

where A* is a p-dimensional Cartesian product space, A* = A* x... x A;, A* is the measurement

domain of input Xk, (k = 1,... ,p); and, A* is given by

IA (X PA, ... xA,(X) = ILXl (X1) * * X,(Xp) (2)

In the current type-1 FLS design,

/A-f3l (X, y) = AIF' (X 1 ) * AF1 (X2) * F1 /F (Xp) *IPG' (y) (3)

6
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For the Stroop task, to name the color of a conflict stimulus (e.g. the word GREEN

displayed in red), needs the favor weak mechanism because there is a strong prepotent tendency

to read the word ("green"), which competes with the response to the color ("red"). In Fig. 2,

we illustrate the schematic of the Stroop model using the example to name the color when the

word GREEN displayed in red [31].

So in the FLS design, the firing degree for "red" should be boosted to reflect the "favor

weak" mechanism if a conflict stimulus presents, but no control should be taken if no con-

flict stimulus presents (e.g., name the word when the word GREEN displayed in red). This

motivates us to use different membership degrees under different scenarios. We propose to

use interval type-2 fuzzy membership function for this favor weak (using upper membership

function) or no control (using lower membership function) mechanism.

3 Upper and Lower Membership Functions

An upper MF and a lower MF are two type-1 MFs which axe bounds for the footprint of

uncertainty of an interval type-2 MF. The upper MF is a subset which has the maximum

membership grade of the footprint of uncertainty; and, the lower MF is a subset which has the

minimum membership grade of the footprint of uncertainty [17].

Same as that in [17], we use an overbar (underbar) to denote the upper (lower) MF. For

example, the upper and lower MFs of A, l(xk) are -fTi (xk) and L_ A (xk), respectively, so that

/Lk (xk) = llt Ai(xk)'PAL(xk)] 1/q (4)

Example 1: Gaussian Primary MF with Uncertain Standard Deviation

Consider the case of a Gaussian primary MF having a fixed mean, ml, and an uncertain

standard deviation that takes on values in [ai, 2]' i.e.,

'k(Xk) = eXP [ orl ak)2] E O [ori,ak2] (5)
k

7
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where: k = 1, ... ,p; p is the number of antecedents; I = 1,..., M; and, M is the number of

rules. The upper MF, Mk(xk), is (see Fig. 3b)

4 (xk) A/(mk, k2; xk), (6)

and the lower MF, It5(xk), is (see Fig. 3)

E4l(Xk) A r(ml, 0 ll; Xk) (7)

This example illustrates how to define ji and p, so that it is clear how to define these

membership functions for other situations (e.g., triangular, trapezoidal, bell MFs).

4 The Inference Engine for Favor Weak FLSs

In a favor weak FLS with a rule base of M rules, in which each rule has p antecedents, let

the lth rule be denoted by R', where R': IF x1 is F1 , and x 2 is F2 , and, ... , and xp is F

THEN y is G'. Although the rule may look the same as that of the interval type-2 FLS, but

the inference engine is different.

In a favor weak FLS with p antecedents, without loss of generality, assume the first w (w <

p) antecedents are weak and should be favored, and all other antecedents (w + 1, iw+ 2 ," , ip)

should be in no control. If the antecedents are not in this order, they can be re-orderred. Then

we can obtain the following Theorem. Our major result for favor weak FLSs is given in:

Theorem 1 In a favor weak nonsingleton FLS (the first w antecedents are weak and should be

favored) with type-2 fuzzification and meet under minimum or product t-norm: (a) the firing

degree for rule 1, i.e., the result of the input and antecedent operations, is

f'= sup' [Ilkf [1 (xi) * 7p xi)]*. 5CTh (x * 4 (xw,)] (8)
xEX 4 ,P

*[A-k.+l (xw+l) * + (xw+l)] * • * [t5, (xP) * , P(xp)]/x; (9)

8
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the supremum is attained when each term in brackets attains its supremum;

(b) the rule R fired output consequent set, I (y), is

Ag (y) = f' * M (Y) (10)

where p e (y) and fTi (y) are the lower and upper membership grades of p &(y); and,

(c) the output fuzzy set, A'B(y), is

M

ttb(Y)= U Ag(y) (11)
1=1

When the input is fuzzified to a type-1 fuzzy set, so thatR k --* AXk (k = 1,... ,p), the

upper and lower MFs of Pkk merge into one MF, AXk (Xk), in which case Theorem 1 simplifies

to:

Corollary 1 In a favor weak FLS (the first w antecedents are weak and should be favored)

with nonsingleton type-1 fuzzification and meet under minimum or product t-norm, fI in (9)

simplifies to: the firing degree for rule 1 is

f supJ ... J [L x(X1)*-I(Xl)]*...*[ Wx (Xw)*-jt (Xw)] (12)

*[,Ix.+ 1(Xw-I) *-P- (xw+ 1 )] *'." * [Axp(Xp) * A4(Xp)]/X; (13)

the supremum is attained when each term in brackets attains its supremum;

When a singleton fuzzifier is used, the upper and lower MFs of A k(Xk) merge into one

crisp value, namely 1, in which case Theorem 1 simplifies further to:

Corollary 2 In a favor weak FLS (the first w antecedents are weak and should be favored)

with singleton fuzzification and meet under minimum or product t-norm, f' in (9) simplifies

to: the firing degree for rule 1, i.e., the result of the input and antecedent operations,

f = 7 y (xi) *... * fTl (X-) *_lly+, (xw+l) ** (xp) (14)

where xi (i = 1,... ,p) denotes the location of the singleton.

9
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5 Relations between Favor Weak FLS and Interval Type-2 FLS

In decision theory, ambiguity about probabilities should not affect choices. However, recent

experiments [13] showed that many people are more willing to bet on risky outcomes (e.g.,

gambling on a roulette wheel) than on an ambiguous one (e.g., chance of a terrorist attack

based on meager or conflicting evidence), holding the judged probability of outcomes constant.

So, the confidence in judged probability can vary widely for "risky" and "ambiguous". Using

functional brain imaging, Hsu et al [13] showed that the level of ambiguity in choices correlates

positively with activation in the amygdala and orbitofrontal cortex, and negatively with a stri-

atal system. This suggests that degree of uncertainty should be considered in decision making,

contrary to traditional decision theory. Type-2 fuzzy sets and FLSs are successful in handling

the uncertainties [17]. Type-2 fuzzy sets have grades of membership that are themselves fuzzy.

A type-2 membership grade can be any subset in [0, 1] - the primary membership; and, corre-

sponding to each primary membership, there is a secondary membership (which can also be in

[0, 1]) that defines the possibilities for the primary membership. Figure 4 shows an example of

a type-2 set. The domain of the membership grade corresponding to x = 4 is also shown.

In [17] [20][22][23] [24], Liang and Mendel proposed the theory and design of interval type-2

FLS. With their pioneering works, people are able to efficiently handle uncertainties. They

applied interval type-2 FLS to a number of very important applications where uncertainties

abound, such as fading channel equalization [18] and co-channel interference elimination [19],

network video traffic modeling and classification [21], connection admission control for ATM

network [16]. Recently, Liang and his students applied interval type-2 FLSs to sensor network

lifetime estimation [39] [38], event forecasting in wireless sensor networks[25][26], and cross-layer

optimization in ad hoc networks[43][42].

In this paper, PFC's "top-down control (favor weak)", "rule-based", and "brain handling

ambiguity" mechanisms are incorporated into the favor weak FLS design to mimic human
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brain learning and decision making for associating, integrating and understanding/inferencing

discovered knowledge from disparate sources. The favor weak FLS we proposed in this paper

is a type-1 FLS which is embeded in the interval type-2 FLS.

6 Application to Situation Understanding Based on Heteroge-

neous Sensor Network

Some valuable work has been reported on situation understanding (situation awareness and

threat assessment). In [10], an intelligent threat assessment processor using genetic algorithms

and fuzzy logic was proposed. In [33], threat assessment was studied in tactical airborne

environments. In [14], a neural network was applied to threat assessment for automated visual

surveillance. In [8], an intelligent assistant was proposed to provide automatic situation and

threat advice in the Air Defence Ground Environment. In [2], a situation and threat assessment

model based on group analysis was proposed. A situation/threat assessment fusion system

was proposed in [5]. Other approaches that have appeared include multiple attribute decision

making [3], bayesian networks [34], etc. Unfortunately, none of these approaches is appropriate

for the multimodal sensor network scenario and none of them have used models derived from

human or biological system mechanisms, although some computational intelligence models

(such as neural networks and fuzzy logic) were used.

In situation awareness, the "weak" can be interprated as, for example, 1) a target (or

entity) rarely appears in the sensor field; or 2) the behavior pattern of this target (or entity)

has low match with the existing ones in database; or 3) space/time correlation of data/entities

to events is low, etc. All the above information can be obtained based on the assumption that

high quality information about objects and events is available as a contributor to situation

awareness. In general, however, such information is insufficient to provide adequate situation

awareness. Actually, some lessons gained from terrorist attacks have already demonstrated
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that the above "weaks" should be favored in situation awareness. Situation awareness needs

the "favor weak" and rule-based mechanisms from PFC.

The new favor weak FLS can be used for level 2/3 fusion (situation awareness and threat

assessment) for inferring activities, relationships, and intentions of objects and people in the

battlespace based on retrieved knowledge consisting of behavioral patterns, new activities,

and anticipated behavior, and also taking into account contextual information (terrain, roads,

weather, etc). The level 1 data fusion results (traditional automatic target recognition and

pattern recognition) from multimodal sensors will be used as antecedents. For example, con-

sidering a heterogeneous sensor network with radar, image/video sensors, and GPS sensor, we

can choose the following three antecedents:

1. The number of switches from non-maneuvering set (constant behavior in speed, accelera-

tion, and direction, etc) to the maneuvering set (varying behavior in speed, acceleration,

and direction, etc). When a target is beginning a maneuver from a non-maneuvering

class, the tracking system can switch the algorithms applied to the problem from a non-

maneuvering set to the maneuvering set. The errors in distance from where the tracker

estimates the position of a target between the actual position can be very large when

the incorrect motion models are applied to the problem. Additionally, when the tracker

does finally catch up to the target after the maneuver, the track will "jump" across the

operator's scope giving a very unrealistic and unreliable picture of what that target is

actually doing. So a threat target will quite often switch from a non-maneuvering set to

the maneuvering set, and vice versa, to avoid being tracked all the time. This knowledge

can be used as an antecedent for situation awareness.

2. The frequency of appearance of such type of target based on some a priori knowledge

such as archival radar data. Generally threat targets are new comparing to archival radar

data.
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3. The importance of geolocation of this target based on the geographical information sys-

tems (GISs). Examples of important geolocations include large metroplex, landmarks,

military bases, airport, etc. Threats happen quite often in such areas.

Of the above three antecedents, the frequency of appearance of such type of target is weak

stimulus and should be favored. A typical rule using the above three antecedents can be

IF the number of switches from non-maneuvering set to the maneuvering set is High, and the

frequency of appearance of such target is Low, and the importance of geolocation of such

type of target is High, THEN the possibility that an I&W needs to be issued is Very Strong.

The linguistic variables used to represent each antecedent are divided into three levels:

Low, Moderate, and High. The consequent - the possibility that an indication and warning

(I&W) needs to be issued - is divided into 5 levels, Very Strong, Strong, Medium, Weak, Very

Weak. So we need to set up 33 - 27 (because every antecedent has 3 fuzzy sub-sets, and there

are 3 antecedents) rules for this FLS. Table 1 summarizes the fuzzy rules we use in this paper.

We show these MFs in Fig. 5.

For input (Xi, X2, X3), the output is computed using

1 =1 A_ (Xj)j!p (X2)t1p (X3Cavg 15

y(X1,X2,X3) = E27 I I () X (15)

By repeating these calculations for Vxi E [0, 10], we obtain a hypersurface y(x1, x 2 , x3 ). This

equation represents the nonlinear mapping between three inputs and one output of the FLS.

Since it's a 4-D surface (xI, x 2 , x 3 , y), it's impossible to be plotted visually.

If we have x3 = 8, and two other antecedents, xi and x2 are variables, we obtain a hyper-

surface y(x1, X2,8) based on the favor weak FLS, as plotted in Fig. 6(a). In contrast, we use

a type-1 FLS where the antecedent membership functions are the lower membership functions

in Fig. 5a since favor weak mechanism is not used, and its output hypersurface y(x1, X2, 8) is

plotted in Fig. 6(b). Observe that from Fig. 6, the favor weak FLS provides a higher possibility
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that this target is a threat, which makes sense because the weak factor, frequency of appear-

ance of such type of target, has been favored. So our proposed favor weak FLS can increase

the probability of threat detection, and provides timely I&W.

7 Conclusions

Humans use multiple sources of sensory information to estimate environmental properties and

has innate ability to integrate information from heterogeneous data sources. There is consensus

that it depends on the brain PFC. The PFC has top-down control (favor weak) and rule-based

mechanisms, which can be illustrated using the Stroop model. In this paper, we proposed

to incorporate the favor weak mechanism into rule-based fuzzy logic systems (FLS) via using

upper and lower membership functions. The inference engine of favor weak fuzzzy logic system

was proposed under three different categories based on fuzzifiers. We analyzed that the favor

weak FLS is a special type-1 FLS which is embeded in an interval type-2 FLS, so it's much

simpler in computing than an interval type-2 FLS. We apply the favor weak FLS to situation

understanding based on heterogeneous sensor network, and it shows that our favor weak fuzzy

logic system has clear advantage comparing to the type-1 FLS. The favor weak FLS can increase

the probability of threat detection, and provides timely indication & warning (I&W).
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Table 1: Fuzzy rules used in the application. Ante 1 is the number of switches from non-
maneuvering set to the maneuvering set or vice versa; Ante 2 the frequency of appearance of
such type of target; Ante 3 is the importance of geolocation of this target; and Consequent is
the possibility that this target is a threat.

Rule # Ante 1 Ante 2 Ante 3 Consequent
1 low low low Weak
2 low low moderate Medium
3 low low high Strong
4 low moderate low Very Weak
5 low moderate moderate Weak
6 low moderate high Medium
7 low high low Very Weak
8 low high moderate Weak
9 low high high Medium
10 moderate low low Medium
11 moderate low moderate Strong
12 moderate low high Very Strong
13 moderate moderate low Weak
14 moderate moderate moderate Medium
15 moderate moderate high Strong
16 moderate high low Very Weak
17 moderate high moderate Weak
18 moderate high high Medium
19 high low low Medium
20 high low moderate Strong
21 high low high Very Strong
22 high moderate low Weak
23 high moderate moderate Medium
24 high moderate high Strong
25 high high low Very Weak
26 high high moderate Weak
27 high high high Moderate
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Figure 2: Schematic of the Stroop model. (a) No control. Activation of conflicting inputs in the
two pathways produces a response associated with the word, due to the stronger connections in
the word reading pathway. (b) Presentation of a conflict stimulus. The color unit is activated
(indicated by the orange fill), representing the current intent to name the color. This passes
activation to the intermediate units in the color naming pathway (indicated by arrows), which
primes those units (indicated by larger size), and biases processing in favor of activity flowing
along this pathway. This biasing effect favors activation of the response unit corresponding to
the color input, even though the connection weights in this pathway are weaker than in the
word pathway.
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Abstract

Inspired by human's innate ability to process and integrate information from disparate,

network-based sources, we apply human-inspired information integration mechanisms to tar-

get detection in cognitive radar sensor network. Humans' information integration mechanisms

have been modelled using maximum-likelihood estimation (MLE) or soft-max approaches. In

this paper, we apply these two algorithms to cognitive radar sensor networks target detection.

Discrete-cosine-transform (DCT) is used to process the integrated data from MLE or soft-

max. We apply fuzzy logic system (FLS) to automatic target detection based on the AC power

values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS

approaches perform very well in the radar sensor network target detection, whereas the existing

2-D construction algorithm doesn't work in this study.

Index Terms : Human-inspired, cognitive radar sensor networks, fuzzy logic systems, auto-

matic target recognition, maximum-likelihood estimation.
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1 Introduction and Motivation

A cognitive network is one that is aware of changes in user needs and its environment, adapts its

behavior to those changes, learns from its adaptations, and exploits knowledge to improve its future

behavior. A cognitive radar sensor network consists of multiple networked radar sensors and radar

sensors sense and communicate with each other collaboratively to complete a mission. In real world,

cognitive radar sensor network information integration is necessary in different applications. For

example, in an emergency natural disaster scenario, such as Utah Mine Collapse in August 2007 or

West Virginia Sago mine disaster in January 2006, cognitive radar sensor network-based information

integration for first responders is critical for search and rescue. Danger may appear anywhere at

any time, therefore, first responders must monitor a large area continuously in order to identify

potential danger and take actions. Due to the dynamic and complex nature of natural disaster, some

buried/foleage victims may not be found with image/video sensors, and UWB radar sensors are

needed for penetrating the ground or sense-through-wall. Unfortunately, the radar data acquired

are often limited and noisy. Unlike medical imaging or synthetic aperture radar imaging where

abundance of data is generally available through multiple looks and where processing time may not

be crucial, practical cognitive radar sensor networks are typically the opposite: availability of data

is limited and required processing time is short. This need is also motivated by the fact that humans

display a remarkable capability to quickly perform target recognition despite noisy sensory signals

and conflicting inputs. Humans are adept at network visualization, and at understanding subtle

implications among the network connections. To date, however, human's innate ability to process

and integrate information from disparate, network-based sources for situational understanding has

not translated well to automated systems. In this paper, we apply human information integration

mechanisms to information fusion in cognitive radar sensor network.
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2 Sense-through-Foliage Radar Sensor Networks Data Measure-

ment and Collection

Our work is based on the sense-through-foliage UWB radar sensor networks. The foliage experiment

was constructed on a seven-ton man lift, which had a total lifting capacity of 450 kg. The limit of

the lifting capacity was reached during the experiment as essentially the entire measuring apparatus

was placed on the lift. (as shown in Fig. 1). The principle pieces of equipment secured on the lift are:

Barth pulser, Tektronix model 7704 B oscilloscope, dual antenna mounting stand, two antennas,

rack system, IBM laptop, HP signal Generator, Custom RF switch and power supply and Weather

shield (small hut). The target is a trihedral reflector (as shown in Fig. 2). Throughout this work,

a Barth pulse source (Barth Electronics, Inc. model 732 GL) was used. The pulse generator uses

a coaxial reed switch to discharge a charge line for a very fast rise time pulse outputs. The model

732 pulse generator provides pulses of less than 50 picoseconds (ps) rise time, with amplitude from

150 V to greater than 2 KV into any load impedance through a 50 ohm coaxial line. The generator

is capable of producing pulses with a minimum width of 750 ps and a maximum of 1 microsecond.

This output pulse width is determined by charge line length for rectangular pulses, or by capacitors

for 1/e decay pulses.

For the data we used in this paper, each sample is spaced at 50 picosecond interval, and 16,000

samples were collected for each collection for a total time duration of 0.8 microseconds at a rate of

approximately 20 Hz. We plot the transmitted pulse (one realization) in Fig. 3a) and the received

echos in one collection in Fig. 3b (averaged over 35 pulses). The data collections were extensive.

20 different positions were used, and 35 collections were performed at each position using UWB

radar sensor networks.
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3 Human Information Integration Mechanisms

Recently, a maximum-likelihood estimation (MLE) approach was proposed for multi-sensory data

fusion in human [4]. In the MLE approach [4], sensory estimates of an environmental property can

be represented by 8j = fi (S) where S is the physical property being estimated, f is the operation

the nervous system performs to derive the estimate, and S is the perceptual estimate. Sensory

estimates are subject to two types of error: random measurement error and bias. Thus, estimates

of the same object property from different cues usually differ. To reconcile the discrepancy, the

nervous system must either combine estimates or choose one, thereby ignoring the other cues.

Assuming that each single-cue estimate is unbiased but corrupted by independent Gaussian noise,

the statistically optimal strategy for cue combination is a weighted average [4]

M

= wi(1)

where wi = and is the weight given to the ith single-cue estimate, a is that estimates

variance, and M is the total number of cues. Combining estimates by this MLE rule yields the

least variable estimate of S and thus more precise estimates of object properties.

Besides, some other summation rules have been proposed in perception and cognition such as

soft-max rule: y = (EM, x L)1 [3] where xi denotes the input from an input source i, and M is the

total number of sources. In this paper, we will apply MLE and soft-max human brain information

integration mechanisms to cognitive radar sensor network information integration.

4 Human-Inspired Sense-through-Foliage Target Detection

In Figs. 4a and 4b, we plot two collections of UWB radars. Fig. 4a has no target on range, and Fig.

4b has target at samples around 13,900. We plot the echo differences between Figs. 4a and 4b in

Fig. 4c. However, it is impossible to identify whether there is any target and where there is target
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based on Fig. 4c. Since significant pulse-to-pulse variability exists in the echos, this motivate us to

explore the spatial and time diversity using Radar Sensor Networks (RSN).

In RSN, the radar sensors are networked together in an ad hoc fashion. They do not rely on a

preexisting fixed infrastructure, such as a wireline backbone network or a base station. They are self-

organizing entities that are deployed on demand in support of various events surveillance, battlefield,

disaster relief, search and rescue, etc. Scalability concern suggests a hierarchical organization

of radar sensor networks with the lowest level in the hierarchy being a cluster. As argued in

[7] [6] [5] [9], in addition to helping with scalability and robustness, aggregating sensor nodes into

clusters has additional benefits:

1. conserving radio resources such as bandwidth;

2. promoting spatial code reuse and frequency reuse;

3. simplifying the topology, e.g., when a mobile radar changes its location, it is sufficient for

only the nodes in attended clusters to update their topology information;

4. reducing the generation and propagation of routing information; and,

5. concealing the details of global network topology from individual nodes.

In RSN, each radar can provide their pulse parameters such as timing to their clusterhead radar,

and the clusterhead radar can combine the echos (RF returns) from the target and clutter. In this

paper, we propose a RAKE structure for combining echos, as illustrated by Fig. 5. The integration

means time-average for a sample duration T and it's for general case when the echos are not in

discrete values. It is quite often assumed that the radar sensor platform will have access to Global

Positioning Service (GPS) and Inertial Navigation Unit (INU) timing and navigation data [1]. In

this paper, we assume the radar sensors are synchronized in RSN. In Fig. 5, the echo, i.e., RF
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response by the pulse of each cluster-member sensor, will be combined by the clusterhead using a

weighted average, and the weight wi is determined by the two human-inspired mechanisms.

We applied the human-inspired MLE algorithm to combine the sensed echo collection from

M = 30 UWB radars, and then the combined data are processed using discrete-cosine transform

(DCT) to obtain the AC values. Based on our experiences, echo with a target generally has

high and nonfluctuating AC values and the AC values can be obtained using DCT. We plot the

power of AC values in Figs. 6a and 6b using MLE and DCT algorithms for the two cases (with

target and without target) respectively. Observe that in Fig. 6b, the power of AC values (around

sample 13,900) where the target is located is non-fluctuating (somehow monotonically increase then

decrease). Although some other samples also have very high AC power values, it is very clear that

they are quite fluctuating and the power of AC values behaves like random noise because generally

the clutter has Gaussian distribution in the frequency domain.

Similarly, we applied the soft-max algorithm (n = 2) to combine the sensed echo collection from

M = 30 UWB radars, and then used DCT to obtain the AC values. We plot the power of AC values

in Figs. 6a and 6b using soft-max and DCT algorithms for the two cases (with target and without

target) respectively. Observe that in Fig. 7b, the power of AC values (around sample 13,900) where

the target is located is non-fluctuating (somehow monotonically increase then decrease).

We made the above observations. However, in real world application, automatic target detection

is necessary to ensure that our algorithms could be performed in real time. In Section 5, we apply

fuzzy logic systems to automatic target detection based on the power of AC values (obtained via

MLE-DCT or soft-max-DCT).

We compared our approaches to the scheme proposed in [10]. In [10], 2-D image was created

via adding voltages with the appropriate time offset. In Figs. 8a and 8b, we plot the 2-D image

created based on the above two data sets (from samples 13,800 to 14,200). The sensed data from
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30 radars are averaged first, then plotted in 2-D [10]. However, it's not clear which image shows

there is target on range.

5 Fuzzy Logic System for Automatic Target Detection

5.1 Overview of Fuzzy Logic Systems

Figure 9 shows the structure of a fuzzy logic system (FLS) [8]. When an input is applied to a

FLS, the inference engine computes the output set corresponding to each rule. The defuzzifer

then computes a crisp output from these rule output sets. Consider a p-input 1-output FLS, using

singleton fuzzification, center-of-sets defuzzification [8] and "IF-THEN" rules of the form

R 1 : IF xl is F1 and x 2 is F1 and ... and x is Fp, THEN y is G1 .

Assuming singleton fuzzification, when an input x' = {x 1 ,... Xp } is applied, the degree of firing

corresponding to the 1th rule is computed as

PF1 (4), * (X') A1 ( = (2)

where * and T both indicate the chosen t-norm. There are many kinds of defuzzifiers. In this paper,

we focus, for illustrative purposes, on the center-of-sets defuzzifier [8]. It computes a crisp output

for the FLS by first computing the centroid, cGi, of every consequent set G1, and, then computing a

weighted average of these centroids. The weight corresponding to the Ith rule consequent centroid

is the degree of firing associated with the 1th rule, T=l/tFL (x.), so that

Ys(x ) = S( (3)

where M is the number of rules in the FLS. In this paper, we design a FLS for automatic target

recognition based on the AC values obtained using MLE-DCT or soft-max-DCT.
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5.2 FLS for Automatic Target Detection

Observe that in Figs. 6 and 7, the power of AC values are quite fluctuating and have lots of

uncertainties. FLS is well known to handle the uncertainties. For convenience in describing the

FLS design for Automatic Target Detection (ATD), we first give the definition of footprint of

uncertainty of AC power values and region of interest in the footprint of uncertainty.

Definition 1 (Footprint of Uncertainty) Uncertainty in the A C power values and time index

consists of a bounded region, that we call the footprint of uncertainty of A C power values. It is the

union of all A C power values.

Definition 2 (Region of Interest (Rol)) An RoI in the footprint of uncertainty is a contour

consisting of a large number (greater than 50) of A C power values where A C power values increase

then decrease.

Definition 3 (Fluctuating Point in Rol) P(i) is called a fluctuating point in the RoI if P(i -

1), P(i), P(i + 1) are non-monotonically increasing or decreasing.

Our FLS for automatic target detection will classify each ROI (with target or no target) based

on two antecedents: the centroid of the ROI and the number of fluctuating points in the ROI.

The linguistic variables used to represent these two antecedents were divided into three levels: low,

moderate, and high. The consequent - the possibility that there is a target at this Rol - was divided

into 5 levels, Very Strong, Strong, Medium, Weak, Very Weak. We used trapezoidal membership

functions (MFs) to represent low, high, very strong, and very weak; and triangle MFs to represent

moderate, strong, medium, and weak. All inputs to the antecedents are normalized to 0-10.

Based on the fact the AC power value of target is non-fluctuating (somehow monotonically

increase then decrease), and the AC power value of clutter behaves like random noise because
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generally the clutter has Gaussian distribution in the frequency domain, we design a fuzzy logic

system using rules such as:

R1 : IF centroid of a RoI (xi) is F', and the number of fluctuating points in the ROI (x2) is F1,

THEN the possibility that there is a target at this RoI (y) is G'.

where 1 = 1,..., 9. We summarize all the rules in Table 1. For every input (xI, x2), the output is

computed using
E'=I PF

1 
(Xl)PF (X2)Ca,,g()

y(xl, x 2 ) = .9 1 F((4)

We ran simulations to 1000 collections in the real world sense-through-foliage experiment, and

found that our FLS performs very well in the automatic target detection based on the AC power

values obtained from MLE-DCT or soft-max-DCT, and achieve probability of detection Pd = 100%

and false alarm rate Pf,a = 0.

6 Conclusions

Inspired by human's innate ability to process and integrate information from disparate, network-

based sources, we applied human-inspired information integration mechanisms to target detection in

cognitive radar sensor network. Humans' information integration mechanisms have been modelled

using maximum-likelihood estimation (MLE) or soft-max approaches. In this paper, we applied

these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform

(DCT) was used to process the integrated data from MLE or soft-max. We applied fuzzy logic

system (FLS) to automatic target detection based on the AC power values from DCT. Simulation

results showed that our MLE-DCT-FLS and soft-max-DCT-FLS approaches performed very well in

the radar sensor network target detection, whereas the existing 2-D construction algorithm couldn't

work in this study.
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Table 1: The rules for target detection. Antecedent 1 is centroid of a Rol, Antecedent 2 is the
number of fluctuating points in the ROI, and Consequent is the possibility that there is a target at
this RoL.

Rule # Antecedent 1 Antecedent 2 Consequent
1 low low medium
2 low moderate weak
3 low high very weak

4 moderate low strong
5 moderate moderate medium
6 moderate high weak
7 high low very strong
8 high moderate strong
9 high high medium
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Figure 1: This figure shows the lift with the experiment. The antennas are at the far end of the
lift from the viewer under the roof that was built to shield the equipment from the elements. This
picture was taken in September with the foliage largely still present. The cables coming from the
lift are a ground cable to an earth ground and one of 4 tethers used in windy conditions.
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Figure 2: The target (a trihedral reflector) is shown on the stand at 300 feet from the lift.
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Figure 5: Echo combining by clusterhead in RSN.
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Abstract

In this paper, we study the wireless channel modeling in foliage environment, a rich scattering

and time-varying environment, based on extensive data collected using UWB and narrowband

(200MHz and 400MHz) radars. We apply two approaches to the wireless channel modeling:

Saleh and Valenzuela (S-V) method for UWB channel modeling and CLEAN method for nar-

rowband and UWB channel modeling. We validated that UWB echo signals (within a burst)

don't hold self-similarity, which means the future signals can't be forecasted based on the re-

ceived signals and channel modeling is necessary from statistical point of view. Based on the

S-V method for UWB channel modeling, in foliage UWB channel, the multi-path contributions

arrive at the receiver are grouped into clusters. The time of arrival of clusters can be modeled

as a Poisson arrival process, while within each cluster, subsequent multipath contributions or

rays also arrive according to a Poisson process. At different field (near field, medium field, and

far field), we observe that the Poisson process parameters are quite different. We also observe

that the amplitude of channel coefficient at each path follows Rician distribution for medium

and far field, and it's non-stationary for paths from near field (one of two Rician distributions),
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and these observations are quite different with the IEEE indoor UWB channel model and S-V

indoor channel model. Based on the CLEAN method, the narrowband (200MHz and 400MHz)

and UWB channel impulse responses have many similarities: both can be modeled as linear

time-variant filter channel.

1 Introduction and Motivation

The true challenge for new communication technologies is to "make the thing work" in real-world

wireless channels. System designers classically focus on the impact of the radio channel on the

received signals and use propagation models for testing and evaluation of receiver designs and

transmission schemes. Yet, the needs for such models evolve as new applications emerge with

different bandwidths, terminal mobility, higher carrier frequencies, new antennas, and so forth.

Furthermore, channel characterization also yields the fundamental ties to classical electromagnetics

and physics, as well as the answers to some crucial questions in communication and information

theory [8]. While many efforts have been spent on indoor chalnel modeling as well as outdoor open

space (or less scattering) environment, wireless channel modeling in foliage (forest) environment

has not been studied. In Vietnam, Bosnia, Kosovo, and in the jungles of Columbia, air to ground

communnications have been thwarded by the presence of foliage that protects and hides the enemy.

In this paper, we study UWB and narrowband channel modeling in foliage environment.

In July 2003, the Channel Modeling sub-committee of study group IEEE 802.15.SG3a published

the final report regarding the UWB indoor multipath channel model [6]. It is a modified version

of the indoor Saleh and Valenzuela (S-V) channel model [10]. The S-V model was developped

for NLOS channel, and it has also been applied to LOS channels where it is perhaps less valid,

unless LOS components are specifically added [9] The IEEE suggested an initial set of values for

the indoor UWB channel model which has range less than 10 meters. However, lots of applications
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of UWB are for outdoor activities such as sense-through-foliage target detection. Forests favor

asymmetric threats because the warfighter has a limited sensing capability. Forests provide excellent

concealment from observation, ambush, and escape, as well as provide secure bases for enemy

Command & Control (C2), weapons caches, and Improvised Explosive Device (IED)/ Weapon of

Mass Destruction (WMD) assembly. These have become "the high ground" in fourth-generation

warfare, providing a significant strategic advantage. Unfortunately, no work has been done on the

outdoor UWB channel modeling.

In this paper, we will model the UWB and narrowband channels using UWB and narrowband

radars in foliage environment which is a rich scattering and time-varying environment. UWB radar

emissions are at a relatively low frequency-typically between 100 MHz and 3 GHz. Additionally,

the fractional bandwidth of the signal is very large (greater than 0.2). Such radar sensor has

exceptional range resolution that also has an ability to penetrate many common materials (e.g.,

walls). Law enforcement personnel have used UWB ground penetrating radars (GPRs) for at least

a decade. Like the GPR, sense-through-foliage radar takes advantage of UWB's very fine resolution

(time gating) and low frequency of operation.

The rest of this paper is organized as follows. In Section 2, we summarize the measurement and

collection of data we used in this paper. In Section 3, we demonstrate that the UWB reflected signal

in foliage environment does not hold self-similarity, and validate that outdoor channel modeling

is necessary. In Section 4, we present our outdoor UWB channel model in rich scattering and

time-varying environment. In Section 5, we study the channel impulse response based on CLEAN

method for narrowband and UWB channels. We conclude this paper in Section 6.
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2 Experiment Setup and Data Collection

Our work is based on the data collected in UWB radar-based sense-through-foliage experiment in

late summer and fall. Late summer foliage, because of the limited rainfall, involved foliage with

decreased water content. Late fall and winter measurements involved largely defoliated but dense

forest, so it's a rich scattering environment. Because of wind or different temperature in dense

forest, it's also a time-varying environment. The UWB radar-based experiment was constructed on

a seven-ton man lift, which had a total lifting capacity of 450 kg. The limit of the lifting capacity

was reached during the experiment as essentially the entire measuring apparatus was placed on the

lift (as shown in Fig. 1). The principle pieces of equipment secured on the lift are: Barth pulser,

Tektronix model 7704 B oscilloscope, dual antenna mounting stand, two antennas, rack system,

IBM laptop, HP signal Generator, Custom RF switch and power supply and Weather shield (small

hut). Throughout this work, a Barth pulse source (Barth Electronics, Inc. model 732 GL) was

used. The pulse generator uses a coaxial reed switch to discharge a charge line for a very fast rise

time pulse outputs. The model 732 pulse generator provides pulses of less than 50 picoseconds (ps)

rise time, with amplitude from 150 V to greater than 2 KV into any load impedance through a 50

ohm coaxial line. The generator is capable of producing pulses with a minimum width of 750 ps

and a maximum of 1 microsecond. This output pulse width is determined by charge line length for

rectangular pulses, or by capacitors for 1/e decay pulses.

For the UWB data we used in this paper, each sample is spaced at 50 picosecond interval, and

16,000 samples were collected for each collection for a total time duration of 0.8 microseconds at a

rate of approximately 20 Hz. The Barth pulse source was operated at low amplitude and 35 pulses

reflected signal were averaged for each collection. Significant pulse-to-pulse variability was noted

for these collections. We plot the transmitted pulse (one realization) in Fig. 2a) and the received

echos in one collection in Fig. 2b (averaged over 35 pulses).
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For comparison, we also studied narrowband (200MHz and 400MHz) radar signal propagation.

Henry Radio preamplifiers were model 50B-200 and 50B-400 for 200MHz and 400MHz respectively.

The Henry Radio power amplifiers were TEMPO-2002A and TEMPO-2400A for 1 KW pulsed at

200MHz and 400MHz respectively. The amplifier was speced at a minimum bandwidth of 2 MHz

around it center frequency. The source for 200MHz and 400MHz narrow band wave signal was an

Agilent 8648A signal generator. For the data we used in this paper, each sample is spaced at 50

picosecond interval, and 16,000 samples were collected for each collection for a total time duration

of 0.8 microseconds at a rate of approximately 20 Hz. Fig. 3a shows the transmitted signal and

Fig. 3b shows the received echos (averaged over 35 pulses) for 200MHz narrowband radar. Fig. 4a

shows the transmitted signal and Fig. 4b shows the received echos (averaged over 35 pulses) for

400MHz narrowband radar. The data collections were extensive. 20 different positions were used,

and 35 collections were performed at each position for UWB, 200MHZ, and 400MHz radars.

3 Self-Similarity Properties of UWB Reflected Signals

It has been observed that ethernet video/voice/data traffic have self-similarity [7] [4] [13]. According

to Stallings [12], "Self-similarity is such an important concept that, in a way, it is surprising that

only recently has it been applied to data communications traffic analysis.", and "Since 1993, a

number of studies reported in the literature have documented that the pattern of data traffic

is well modeled by self-similar processes in a wide variety of real-world networking situations."

Such self-similarity is quite common in both natural and human-made phenomena [12] such as the

distribution of earthquakes, ocean waves, fluctuation of the stock market. But the self-similarity

of UWB signals has not been studied.

For a detailed discussion on self-similarity in time-series, see [13] [12]. Here we briefly present

its definition [3]. Given a zero-mean, stationary time-series X = (Xt; t = 1, 2,3,...), we define
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the m-aggregated series X(m) = (xY(m); k = 1, 2, 3,-") by summing the original series X over

nonoverlapping blocks of size m. Then it's said that X is H-self-similar, if, for all positive rn, X(m)

has the same distribution as X rescaled by mH. That is,

tMn

Xt =&m-H X, Vm E N (1)
i=(t-1)m+l

If X is H-self-similar, it has the same autocorrelation function r(k) = E[(Xt - I)(Xt+k - p)]/u2 as

the series X(m) for all rn, which means that the series is distributionally self-similar: the distribution

of the aggregated series is the same as that of the original.

Self-similar processes can show long-range dependence. A process with long-range dependence

has an autocorrelation function r(k) - k- 3 as k - oo, where 0 < / < 1. The degree of self-

similarity can be expressed using Hurst parameter H = 1 - //2. For self-similar series with

long-range dependence, 1/2 < H < 1. As H - 1, the degree of both self-similarity and long-range

depence increases.

One method that has been widely used to verify self-similarity is the variance-time plot, which

relies on the slowly decaying variance of a self-similar series. The variance of X(m) is plotted

against m on a log-log plot, and a straight line with slope (-/3) greater than -1 is indicative of

self-similarity, and the parameter H is given by H = 1 -/3/2. We use this method in this paper. In

Fig. 5, we plot the variance of X(m) against m on a log-log plot for 10 different UWB data collections.

From this figure, it's very clear that the UWB signal does not has self-similarity because its

trace has slope lower than -1. This conclusion means that we can't use current received signals

to forecast future reflected signals within one collection, so channel modeling is very important to

UWB outdoor channel because the charateristics of the future reflected signal could be known in

advance if its channel can be modelled.
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4 UWB Channel Modeling Based on S-V Approaches

4.1 Introduction to Channel Modeling for Indoor UWB Channel

In the S-V model [10], the arrival of clusters is modelled as a Poisson arrival process with a rate

A, while within each cluster, subsequent multipath contributions or rays also arrive according to

a Poisson process with a rate A (see Fig. 7). In the S-V model, the magnitude of the k-th path

within the 1-th cluster follows a Rayleigh distribution, and the phase of each path is assumed to

be a statistically independent random variable over [0, 27r). Besides, the average Power Decay

Profile (PDP) is characterized by an exponential decay of the amplitude of the clusters, and a

different exponential decay for the amplitude of the received pulses within each cluster, as shown

in Fig. 8. In the IEEE UWB indoor channel model [6], the cluster approach was adopted (same

as S-V model), but a log-normal distribution was suggested for characterizing the multi-path gain

amplitude, and an additional log-normal variable was introbuced for representing the fluctuations

of the total multipath gain. Besides, the phase of each path is assumed to be either 0 or 7r with

equal probability.

4.2 Outdoor UWB Channel Modeling

4.2.1 Cluster Arrival and Power Decay Profile

We study the outdoor UWB signal propagation in three cases: near field (less than 55m), medium

field (55m-85m), and far field (above 85m and up to 120m in this study). In the data collection,

each sample is spaced at 50 picosecond interval, so these cases are corresponding to samples 1-7333

for near field, samples 7333-11333 for medium field, and samples 11334-16000 for far field. In Fig.

6, we plot the power profile of the received echos (averaged over 30 collections to eliminate the

effect of random noise and each collection was averaged based on 35 pulses) for the three different

7
Page 62 of 134



cases. Since the transmitted pulse (as plotted in Fig. 2a) is a very narrow impulse pulse (like

a delta function in time domain), we analyzed the channel property based on the received echos

power profile plotted in Fig. 6, and similar methodology was also used in S-V model studies [10].

Observe Fig. 6, multi-path contributions arrive at the receiver grouped into clusters. The time

of arrival of clusters can be modeled as a Poisson arrival process with a rate A, while within each

cluster, subsequent multipath contributions or rays also arrive according to a Poisson process with

a rate A (see Fig. 7). We define:

" Tt = the arrival time of the first path of the 1-th cluster;

" Tk,l = the delay of the k-th path within the 1-th cluster relative to the first path arrival time

T;

" A = the cluster arrival rate;

" A = the ray arrival rate, i.e., the arrival rate of the paths within each cluster.

By definition, we have Tol = TI. The distributions of the cluster arrival time and the ray arrival

time are given by

p(TIITI_1) = Aexp (-A(TI - T- 1), 1 > 0

AT01'r(k-1),I) = Aexp (-A(k,l - T(k-I)J)), k > 0 (2)

The above observations are very similar as that for the indoor UWB channel. Specifically, we also

observed the A and A are quite different for three different cases.

a Observe Fig. 6a for near field, A (1/ns) is around 0.02 (one cluster in every 50ns or 1000

samples), and A (1/ns) is around 0.4 (one path in every 2.5ns or 50 samples). Perhaps it's

because some major scatters in near field (such as tree stems) reflected signals, so some paths

are quite dominant.

8
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" Observe Fig. 6b for medium field, clusters arrive quite often. A (1/ns) is around 0.05 (one

cluster in every 20ns or 400 samples), and A (1/ns) is around 1 (one path in every Ins or 20

samples).

" Observe Fig. 6c for far field, clusters almost always arrive (because of rich scattering), so A

(1/ns) is around 0.5 (one cluster in every 2ns or 20 samples), and A (1/ns) is around 4 (one

path in every 250ps or 5 samples). Perhaps it's because of rich scattering, every path has

very similar power level.

Besides, the average PDP can be represented by an exponential decay of the amplitude of the

clusters, and a different exponential decay for the amplitude of the received pulses within each

cluster, as shown in Fig. 8.

4.2.2 Statistical Distribution of Channel Coefficients

We also study the statistical distributions of each given path. We plot the histogram for some

sample values of the above three cases based on 30 collections and each collection is averaged over

35 pulses. Near field samples are based on samples 5001-6000; medium field samples are based on

samples 8001-9000; and far field samples are based on samples 12001-13000. Since the samples are

very close (within 7.5m distance), so their path-loss effect can be ignored. For each case, we have

30000 samples, and we plot their histogram in Fig. 9.

First, observe Fig. 9c for far field, the histogram can be almost perfectly modelled by a non-

zero-mean Gaussian distribution, which means the amplitude of the channel coefficient follows a

Rician distribution,

p.(x) = -expI X2+S2 lIo(-i) x > 0 (3)
T2 - -2~ 2  -

where s is the mean value of Gaussian and Io(.) is the zero order modified Bessel function. This

kind of channel is known as Rician fading channel. A Rician channel is characterized by two
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parameters, Rician factor K which is the ratio of the direct path power to that of the multipath,

i.e., K = s 2/2a 2 , and the Doppler spread (or single-sided fading bandwidth) fd. Similarly, Fig.

9b for medium field, the histogram can be approximately modelled by a non-zero-mean Gaussian

distribution, which means the amplitude of the channel coefficient follows a Rician distribution.

Observe Fig. 9a for near field, the histogram can be approximately modelled by two non-zero-mean

Gaussian distributions, which means it's non-stationary, ald the amplitude of the channel coefficient

follows one of two Rician distributions. The above observations are quite different with

the indoor UWB channel model (log-normal distribution) and S-V model (Rayleigh

distribution). The sign of channel coefficient is either +1 or -1, i.e., its phase is either 0 or 7,

which matches the IEEE indoor UWB channel model.

5 Wireless Channel Modeling Based on CLEAN Method

We apply the CLEAN algorithm to obtain the UWB channel model based on the transmitted pulses

and received echos. The CLEAN algorithm was first introduced in [5] and has been applied to UWB

measurements [2][11] and it assumes that the channel is a series of impulses which is consistent

with the tapped-delay line channel model. This algorithm searches the received echos iteratively

with the template to find the maximum correlation [1]. The steps are [9]:

1. Calculate the autocorrelation of the template r,,(t) and the cross-correlation of the template

with the received waveform r,y(t).

2. Find the largest correlation peak in r8y(t), record the normalized amplitudes ak and relative

time delay T k of the correlation peak.

3. Subtract r,,(t) scaled by ak from r,,(t) at the time delay Trk.

4. If a stopping criterion (e.g., a minimum threshold on the peak correlation) is not met, go to
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step 2. Otherwise stop.

Based on the CLEAN method, we successfully obtained the channel impulse responses for all

transmit waveforms and receive echoes. For illustration purposes, in Figs. 10, 11, and 12, we plot

the channel impulse responses for 200MHz, 400MHz, and UWB channels using CLEAN method in

two experiments. Observe that for all channels, channel impulse responses have many similarities:

all can be modeled as linear time-variant filter channel, which is a more general case of the S-V

model.

6 Conclusions

In this paper, we studied the statistical modeling for outdoor wireless channels (200MHz, 400MHz,

and UWB) in rich scattering and time-varying environment based on extensive data collected using

narrowband and UWB radars. We validated that UWB echo signals (within a burst) don't hold

self-similarity, which means the future signals can't be forecasted based on the received signals and

channel modeling is necessary from statistical point of view. In outdoor UWB channel, the multi-

path contributions arrive at the receiver are grouped into clusters. The time of arrival of clusters

can be modeled as a Poisson arrival process, while within each cluster, subsequent multipath

contributions or rays also arrive according to a Poisson process. At different field (near field,

medium field, and far field), we observed that the Poisson process parameters are quite different.

We also observed that the amplitude of channel coefficient at each path follows Rician distribution

for medium and far field, and it's non-stationary for paths from near field (one of two Rician

distributions), and these observations are quite different with the IEEE indoor UWB channel

model and S-V model. Using CLEAN method, we observed that for all channels, channel impulse

responses have many similarities: all can be modeled as linear time-variant filter channel, which is

a more general case of the S-V model.
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Figure 1: This figure shows the lift with the experiment. The antennas are at the far end of the
lift from the viewer under the roof that was built to shield the equipment from the elements. This
picture was taken in September with the foliage largely still present. The cables coming from the
lift are a ground cable to an earth ground and one of 4 tethers used in windy conditions.
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Figure 2: UWB radar Transmitted pulse and received echos in one experiment. (a) Transmitted
pulse. (b) Received echos.
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Figure 3: Narrowband radar (200MHz) transmitted pulse and received echos in one experiment.
(a) Transmitted pulse. (b) Received echos.

16
Page 73 of 134



25x 10 ....

2.5 e

2-

1.5

0.5

0

-1

-0.5

-1.5

-2

0 2000 4000 6000 8000 10000 12000 14000 16000

(a)

1.0

1

05

0

-0.5-

50 2000 4000 6000 80'00 10000 12000 14000 16000

(b)
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Figure 10: The channel impulse responses for 20OMHz channel using CLEAN method in two
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Figure 11: The channel impulse responses for 400MHz channels using CLEAN method in two
experiments.
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Human-Inspired Information Integration for UWB
Radar Sensor Networks
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Abstract- Inspired by human's innate ability to process adept at network visualization, and at understanding subtle
and integrate information from disparate, network-based implications among the network connections. To date,
sources, we apply human-inspired information Integration however, human's innate ability to process and integrate
mechanisms to target detection in UWB radar sensor network.
Humans' information Integration mechanisms have been mod- information from disparate, network-based sources for sit-
elled using maximum-likelihood estimation (MLE) or soft- uational understanding has not translated well to automated
max approaches. In this paper, we apply these two algorithms systems. In this paper, we apply human information inte-
to cognitive radar sensor networks target detection. Discrete- gration mechanisms to information fusion in UWB radar
cosine-transform (DCT) is used to process the integrated data sensor network.
from MLE or soft-max. We apply fuzzy logic system (FLS)
to automatic target detection based on the AC power values
from DCT. Simulation results show that our MLE-DCT-FLS II. SENSE-THROUGH-FOLIAGE RADAR SENSOR
and soft-max-DCT-FLS approaches perform very well in the
radar sensor network target detection, whereas the existing NETWORKS DATA MEASUREMENT AND COLLECTION
2-D construction algorithm doesn't work in this study. Our work is based on the sense-through-foliage UWB

Index Terms : Human-inspired, UWB radar sensor networks, radar sensor networks. The foliage experiment was con-
fuzzy logic systems, automatic target recognition, maximum- structed on a seven-ton man lift, which had a total lifting
likelihood estimation. capacity of 450 kg. The limit of the lifting capacity was

reached during the experiment as essentially the entire
I. INTRODUCTION AND MOTIVATION measuring apparatus was placed on the lift. The principle

pieces of equipment secured on the lift are: Barth pulser,
In real world, UWB radar sensor network information Tektronix model 7704 B oscilloscope, dual antenna mount-

integration is necessary in different applications. For ex- ing stand, two antennas, rack system, IBM laptop, HP
ample, in an emergency natural disaster scenario, such as signal Generator, Custom RF switch and power supply and
Utah Mine Collapse in August 2007 or West Virginia Sago Weather shield (small hut). The target is a trihedral reflector
mine disaster in January 2006, UWB radar sensor network- (as shown in Fig. 1). Throughout this work, a Barth pulse
based information integration for first responders is critical source (Barth Electronics, Inc. model 732 GL) was used.
for search and rescue. Danger may appear anywhere at any The pulse generator uses a coaxial reed switch to discharge
time, therefore, first responders must monitor a large area a charge line for a very fast rise time pulse outputs. The
continuously in order to identify potential danger and take model 732 pulse generator provides pulses of less than 50
actions. Due to the dynamic and complex nature of natural picoseconds (ps) rise time, with amplitude from 150 V to
disaster, some buried/foleage victims may not be found greater than 2 KV into any load impedance through a 50
with image/video sensors, and UWB radar sensors are ohm coaxial line. The generator is capable of producing
needed for penetrating the ground or sense-through-wall. pulses with a minimum width of 750 ps and a maximum
Unfortunately, the radar data acquired are often limited and of I microsecond. This output pulse width is determined by
noisy. Unlike medical imaging or synthetic aperture radar charge line length for rectangular pulses, or by capacitors
imaging where abundance of data is generally available for l/e decay pulses.
through multiple looks and where processing time may For the data we used in this paper, each sample is
not be crucial, practical cognitive radar sensor networks spaced at 50 picosecond interval, and 16,000 samples were
are typically the opposite: availability of data is limited collected for each collection for a total time duration of
and required processing time is short. This need is also 0.8 microseconds at a rate of approximately 20 Hz. We
motivated by the fact that humans display a remarkable plot the transmitted pulse (one realization) in Fig. 2a) and
capability to quickly perform target recognition despite the received echos in one collection in Fig. 2b (averaged
noisy sensory signals and conflicting inputs. Humans are over 35 pulses).
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III. HUMAN INFORMATION INTEGRATION X 10. ---.....................................

MECHANISMS

Recently, a maximum-likelihood estimation (MLE) ap-
proach was proposed for multi-sensory data fusion in hu-
man [4]. In the MLE approach [4], sensory estimates of an I
environmental property can be represented by S1 = fi(s)
where S is the physical property being estimated, f is the 0

operation the nervous system performs to derive the esti-
mate, and S is the perceptual estimate. Sensory estimates
are subject to two types of error: random measurement -2

error and bias. Thus, estimates of the same object property -3

from different cues usually differ. To reconcile the discrep-
ancy, the nervous system must either com bine estim ates -0 2M................ .. .... ........ ..
or choose one, thereby ignoring the other cues. Assuming Sarnp* Index

that each single-cue estimate is unbiased but corrupted (b)
by independent Gaussian noise, the statistically optimalby idepndet Gussan ois, te satiticllyoptmal Fig. 2. Transmitted pulse and received echos in one experiment. (a)
strategy for cue combination is a weighted average [4] Transmitted pulse. (b) Received e chos.

MSc =>w,S, (1)
x= 1

2 target at samples around 13,900. We plot the echo differ-
where wi = ,, and is the weight given to the ith ences between Figs. 3a and 3b in Fig. 3c. However, it is
single-cue estimate, a? is that estimates variance, and M impossible to identify whether there is any target and where
is the total number of cues. Combining estimates by this there is target based on Fig. 3c. Since significant pulse-to-
MLE rule yields the least variable estimate of S and thus pulse variability exists in the echos, this motivate us to
more precise estimates of object properties. explore the spatial and time diversity using Radar Sensor

Besides, some other summation rules have been pro- Networks (RSN).
posed in perception and cognition such as soft-max rule: In RSN, the radar sensors are networked together in an

(Ei=1 xi ); [3] where x1 denotes the input from an ad hoc fashion. They do not rely on a preexisting fixed
input source i, and M is the total number of sources. In this infrastructure, such as a wireline backbone network or a
paper, we will apply MLE and soft-max human brain in- base station. They are self-organizing entities that are de-
formation integration mechanisms to cognitive radar sensor ployed on demand in support of various events surveillance,
network information integration, battlefield, disaster relief, search and rescue, etc. Scalability

concern suggests a hierarchical organization of radar sensor
IV. HUMAN-INSPIRED SENSE-THROUGH-FOLIAGE networks with the lowest level in the hierarchy being a

TARGET DETECTION cluster. As argued in [7] [6] [5] [9], in addition to helping
In Figs. 3a and 3b, we plot two collections of UWB with scalability and robustness, aggregating sensor nodes

radars. Fig. 3a has no target on range, and Fig. 3b has into clusters has additional benefits:
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2500

Z=0tcombining echos, as illustrated by Fig. 4. The integration
,500 means time-average for a sample duration T and it's for
low general case when the echos are not in discrete values. It is

oquite often assumed that the radar sensor platform will have
' access to Global Positioning Service (GPS) and Inertial

-5= Navigation Unit (INU) timing and navigation data [1]. In

-I WDthis paper, we assume the radar sensors are synchronized

-2= in RSN. In Fig. 4, the echo, i.e., RF response by the pulse

1.4 ....... 45 iof each cluster-member sensor, will be combined by the
-A W. ,,,'4 clusterhead using a weighted average, and the weight wi
(a) is determined by the two human-inspired mechanisms.

S.M 14 45.

(b)
5=-- . Fig. 4. Echo combining by clusterhead in RSN.

3=- We applied the human-inspired MLE algorithm to conm-

~i1 bine the sensed echo collection from M = 30 UWB radars,low. and then the combined data are processed using discrete-
cosine transform (DCT) to obtain the AC values. Based

-,2M on our experiences, echo with a target generally has high
-I and nonfluctuating AC values and the AC values can be

-3M obtained using DCT. We plot the power of AC values in

,1 s Figs. 5a and 5b using MLE and DCT algorithms for the twocases (with target and without target) respectively. Observe
(c) that in Fig. 5b, the power of AC values (around sam-

Fig. 3. Measurement with poor signal quality and 35 pulses average. (a) pIe 13,900) where the target is located is non-fluctuating
Expanded view of traces (no target) from sample 13,001 to 15,000. (b) (somehow monotonically increase then decrease). Although
Expanded view of traces (with target) from samples 13,001 to 15,000. (c) some other samples also have very high AC power values, it
The differences between (a) and (b). is very clear that they are quite fluctuating and the power of

AC values behaves like random noise because generally the
clutter has Gaussian distribution in the frequency domain.

1) conserving radio resources such as bandwidth; Similarly, we applied the soft-max algorithm (n = 2) to
2) promoting spatial code reuse and frequency reuse; combine the sensed echo collection from M = 30 UWB
3) simplifying the topology, e.g., when a mobile radar radars, and then used DCT to obtain the AC values. We

changes its location, it is sufficient for only the plot the power of AC values in Figs. 5a and 5b using soft-
nodes in attended clusters to update their topology max and DCT algorithms for the two cases (with target
information; and without target) respectively. Observe that in Fig. 6b,

4) reducing the generation and propagation of routing the power of AC values (around sample 13,900) where the
information; and, target is located is non-fluctuating (somehow monotonically

5) concealing the details of global network topology increase then decrease).
from individual nodes. We made the above observations. However, in real

In RSN, each radar can provide their pulse parameters such world application, automatic target detection is necessary to
as timing to their clusterhead radar, and the clusterhead ensure that our algorithms could be performed in real time.
radar can combine the echos (RF returns) from the target In Section V, we apply fuzzy logic systems to automatic
and clutter. In this paper, we propose a RAKE structure for target detection based on the power of AC values (obtained
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Fig. 6. Power of AC values using soft-max based information integration(b) and DCT. (a) No target (b) With target in the field.

Fig. 5. Power of AC values using MLE-based information integration
and DCT. (a) No target (b) With target in the field. R1 : IF x, is F' and x 2 is F12 and ... and xp is F1

We compared our approaches to the scheme proposed in THEN y is G1.

[10]. In [10], 2-D image was created via adding voltages Assuming singleton fuzzification, when an input x' =

with the appropriate time offset. In Figs. 7a and 7b, we plot {x ,... x,} is applied, the degree of firing corresponding
the 2-D image created based on the above two data sets to the lth rule is computed as
(from samples 13,800 to 14,200). The sensed data from 30 UFI (XI. AF- (X'2) 111 1 (X') Tit-1F

, 
(X') (2)

radars are averaged first, then plotted in 2-D [10]. However, 1  ( P ( -

it's not clear which image shows there is target on range. where * and T both indicate the chosen t-norm. There
are many kinds of defuzzifiers. In this paper, we focus, for
illustrative purposes, on the center-of-sets defuzzifier [8]. ItV. Fuzzy LOGIC SYSTEM FOR AUTOMATIC TARGET computes a crisp output for the FLS by first computing the

DETECTION centroid, CG, of every consequent set G, and, then com-

A. Overview of Fuzzy Logic Systems puting a weighted average of these centroids. The weight
corresponding to the 1th rule consequent centroid is the

Figure 8 shows the structure of a fuzzy logic system degree of firing associated with the 1th rule, 'ri .IFI (x),
(FLS) [8]. When an input is applied to a FLS, the inference so that
engine computes the output set corresponding to each rule. EtI- 1 CGIT , IFI (i)
The defuzzifer then computes a crisp output from these Yco. (X') = (3)
rule output sets. Consider a p-input I-output FLS, using E IM Ti1tF (x )

singleton fuzzification, center-of-sets defuzzification [8] where M is the number of rules in the FLS. In this paper,
and "IF-THEN" rules of the form we design a FLS for automatic target recognition based on
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Definition I (Footprint of Uncertainty): Uncertainty in
the AC power values and time index consists of a bounded
region, that we call the footprint of uncertainty of AC
power values. It is the union of all AC power values.

Definition 2 (Region of Interest (Rol)): An Rol in the
footprint of uncertainty is a contour consisting of a large

1.4 number (greater than 50) of AC power values where AC
1.45 power values increase then decrease.

1.41 Definition 3 (Fluctuating Point in Rol): P(i) is called a
fluctuating point in the Rol if P(i - 1), P(i), P(i + 1) are

1.415 non-monotonically increasing or decreasing.

1.42 Our FLS for automatic target detection will classify each1.385 1.30 1,355 1.4 1.406 1.41 1.415 1.42

X1' ROI (with target or no target) based on two antecedents:
(a) the centroid of the ROI and the number of fluctuating

X lo' points in the RO. The linguistic variables used to represent
these two antecedents were divided into three levels: low,

1.385 moderate, and high. The consequent - the possibility that
1.39 there is a target at this Rol - was divided into 5 levels,

Very Strong, Strong, Medium, Weak, Very Weak. We used
1,M5 trapezoidal membership functions (MFs) to represent low,

1.4 high, very strong, and very weak; and triangle MFs to
1.405 represent moderate, strong, medium, and weak. All inputs

to the antecedents are normalized to 0-10.
1.41 Based on the fact the AC power value of target is

1.415 non-fluctuating (somehow monotonically increase then de-
crease), and the AC power value of clutter behaves like

1.42 1.ass 1.39 1.39 1.4 1.405 1.41 IRIS 1.42 random noise because generally the clutter has Gaussian
10l distribution in the frequency domain, we design a fuzzy

(b) logic system using rules such as:
Fig. 7. 2-D image created via adding voltages with the appropriate time R1 : IF centroid of a RoI (xj) is F1, and the number of

offset. (a) No target (b) With target in the field, fluctuating points in the ROI (X2) is F1, THEN the

possibility that there is a target at this Rol (y) is G1.

the AC values obtained using MLE-DCT or soft-max-DCT where 1 = 1,... , 9. We summarize all the rules in Table I.
For every input (x1, x2), the output is computed using

FUZZY LOGIC SYSTEM.

y(x1,x2) (4)
CRISP CISP E1=1 P0 (Xl)ALF-(X2)

_ , - R.).Y ° We ran simulations to 1000 collections in the real world
sense-through-foliage experiment, and found that our FLS

-M _Nr ------------ F OUT performs very well in the automatic target detection based
SE_S SE_TS on the AC power values obtained from MLE-DCT or soft-

max-DCT, and achieve probability of detection Pd = 100%
Fig. 8. The structure of a fuzzy logic system. and false alarm rate Pfa = 0.

VI. CONCLUSIONS
B. FLSfor Automatic Target Detection Inspired by human's innate ability to process and inte-

Observe that in Figs. 5 and 6, the power of AC values grate information from disparate, network-based sources,
are quite fluctuating and have lots of uncertainties. FLS is we applied human-inspired information integration mecha-
well known to handle the uncertainties. For convenience in nisms to target detection in UWB radar sensor network.
describing the FLS design for Automatic Target Detection Humans' information integration mechanisms have been
(ATD), we first give the definition of footprint of uncer- modelled using maximum-likelihood estimation (MLE) or
tainty of AC power values and region of interest in the soft-max approaches. In this paper, we applied these two
footprint of uncertainty. algorithms to UWB radar sensor networks target detection.
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TABLE I
THE RULES FOR TARGET DETECTION. ANTECEDENT I IS centroid of a

Rol, ANTECEDENT 2 IS the number of fluctuating points in the RO,

AND CONSEQUENT iS the possibility that there is a target at this Rol.

Rule # Antecedent 1 Antecedent 2 Consequent
I low low mediu-m

2 low mRerate weak
3 low h9ih _vei57 wea
4T __m_oUeratc --- ow- strong
5 m;oemate --- rnWF _m-edium

6codrate high weak
7 high Tow very strong
8 hITF moderate strong
_high high medim

Discrete-cosine-transform (DCT) was used to process the
integrated data from MLE or soft-max. We applied fuzzy
logic system (FLS) to automatic target detection based
on the AC power values from DCT. Simulation results
showed that our MLE-DCT-FLS and soft-max-DCT-FLS
approaches performed very well in the radar sensor network
target detection, whereas the existing 2-D construction
algorithm couldn't work in this study.
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Abstract

In this paper, we study the statistical modeling for outdoor non line-of-sight (NLOS) channel

in rich scattering and time-varying foliage environment based on extensive data collected using

both narrowband and ultra-wideband (UWB) radars. The multi-path contributions arrive at

the receiver are grouped into clusters. The time of arrival of clusters can be modeled as a

Poisson arrival process, while within each cluster, subsequent multipath contributions or rays

also arrive according to a Poisson process. However, the parameters are quite different along

with the frequency. We also observe that the amplitude of channel coefficient at each path

can be more accurately characterized by log-logistic distribution (LLD) other than log-normal,

Weibull or Rayleigh due to the best goodness-of-fit and smallest root-mean-square (RMS).

Index Terms :Propagation channel, outdoor, NLOS, log-logistic, goodness-of-fit, narrow-

band, UWB

1 Introduction and Motivation

The area of indoor radio propagation channel measurement and modeling has been intensively

investigated [1] [2] [3] because if the characterization of propagation channel is known, efforts can be

employed at both transmitters and receivers to overcome the degrading effects and therefore improve

the communication performance. As far as military warefare is concerned, lots of applications are for

outdoor activities such as sense-through-foliage target detection. It is believed that understanding

the characterization of outdoor non line-of-sight (NLOS) channels will assist both target detection
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as well as commercial wireless communications.

Like indoor environment, the foliage contains a wealth of multiple scattering other than LOS

free space. In addition, the movement of leaves, branches and even the tree trunks contribute to

the time-variance fading phenomenon. Since the foliage medium can be completely described by

its time and space varying feature, one can investigate the channel model based on characterization

of the channel impulse response (CIR).

In our investigation, we will apply both narrowband and ultra-wide band (UWB) radar to model

the propagation channel, as we believe that foliage is composed of intervening materials that are

electromagnetically dispersive, which contributes to the strong frequency dependence of foliage,

and thus a narrowband-wideband study would assist with the better understanding of statistic

property of the channel. Narrowband signals have been tried at 200, 400 and 600 megahertz

respectively, while UWB radar emissions are at a relatively low frequency-typically between 100

MHz and 3 GHz. Each frequency component in a radar signal will sense the foliage clutter in a

slightly different manner, therefore provides difference in multipath.

The rest of this paper is organized as follows. In Section 2, we summarize the measurement

and collection of the data. In Section 3, we apply CLEAN algorithm to extract CIR for 200MHz,

400MHZ, 600MHz and UWB signals. Section 4 presents the channel model in view of temporal

characterization as well as statistic model comparison. We conclude our work in Section 5.

2 Measurement Setup

The foliage penetration measurement effort began in August 2005 and continued through December

2005. Working in August through the fall of 2005, the foliage measured included late summer

foliage and fall and early winter foliage. Late summer foliage, because of the limited rainfall,

involved foliage with decreased water content. Late fall and winter measurements involved largely

defoliated but dense forest, so it's a rich scattering environment. Because of wind or different

temperature in dense forest, it's also a time-varying environment.

The radar experiment was constructed on a seven-ton man lift, which had a total lifting capacity

of 450 kg. The limit of the lifting capacity was reached during the experiment as essentially the

2
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entire measuring apparatus was placed on the lift (as shown in Fig. 1). The principle pieces of

equipment secured on the lift are: dual antenna mounting stand; two antennas; 200MHz, 1Kw

Amplifier, power supply, pre-amp; 400MHz, 1Kw Amplifier, power supply, pre-amp; 600MHz,

1Kw Amplifier, power supply, pre-amp; Tektronix model 7704 B oscilloscope; rack system; IBM

laptop; HP signal Generator; Custom RF switch and power supply and weather shield (small hut).

Particularly for UWB signal, a Barth pulse source (Barth Electronics, Inc. model 732 GL) was

used. The pulse generator uses a coaxial reed switch to discharge a charge line for a very fast rise

time pulse outputs. The model 732 pulse generator provides pulses of less than 50 picoseconds (ps)

rise time, with amplitude from 150 V to greater than 2 KV into any load impedance through a 50

ohm coaxial line. The generator is capable of producing pulses with a minimum width of 750 ps

and a maximum of 1 microsecond. This output pulse width is determined by charge line length for

rectangular pulses, or by capacitors for 1/e decay pulses.

The system was pointing at the specified 250 feet one way distance. For the data we used in this

paper, each sample is spaced at 50 picoseconds interval, and 16,000 samples were collected for each

collection for a total time duration of 0.8 microseconds. The accomplished data structure is shown

in Fig. 2. For each frequency band, 12 positions named '0','2','4','5','6','8','10','12','14','16','18'

and '20' have been tested. 35 pulses have been obtained for the transmitted and received signal

respectively at each position. 'EMCO' is the brand name of the antenna horn. 'Background' refers

to the background data taken along the track with the antenna bore sighted to the targets.

In the foliage-target data, we fired from each of twelve positions along the track. The firing

was into the foliage at right angles to the track and these right angle shots are called track data,

i.e., 'Track'. At all twelve positions along the track, the azimuth angle of the transmit antenna was

changed from plus 10 to - 10 degrees to provide radial measurements, i.e., 'Radial'.

3
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3 Channel Impulse Response Based on the Measured Data and

CLEAN Algorithm

The average transmitted and received pulses at position 4 for different frequencies have been il-

lustrated from Figs. 3 - 6. The purpose of average is to remove white Gaussian noise. Note that

at a different position the result will be slightly different. However, illustration at one position is

sufficient enough to describe the characterization.

The complicated multipath and time-varying CIR can be modeled as follows [4]

r(t) ; E anpn(t - .) (1)
n

where an and Tn is referred to as the amplitude and delay of the nth propagation path. In order

to extract the CIR from our measurement, the CLEAN algorithm have been used. It was initially

introduced in [5] to enhance radio astronomical maps of the sky, and has also been employed in

narrowband channel modeling [6] [7]; also applied in UWB channel characterization problems [4] [8].

Our steps involved [8] are:

1. Calculate the autocorrelation of the transmitted signal R,.s(t) and the cross-correlation of the

transmitted with the received waveform R,,(t).

2. Find the largest correlation peak in R,y(t), record the normalized amplitudes ak and the

relative time delay Tk of the correlation peak.

3. Subtract R,,(t) scaled by ak from R,,(t) at the time delay Tk.

4. If a stopping criterion (a minimum threshold on the peak correlation is not met, go step 2.

otherwise stop.)

Given the transmission, reception and the CLEAN processing described above, the obtained CIR

are illustrated from Fig. 7 to Fig. 10. Note that we plot the absolute value of the UWB channel

for the comparison between the outdoor UWB channel with the indoor S-V model [9] (see Fig. 10).

It is shown that

4
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1. Both narrowband and UWB channels are made up of multipath components. The time-

varying path magnitude implies that fading generally exists, therefore the received pulses are

fairly random from one time to another.

2. The UWB channel we obtained looks similar as the CIR in S-V model shown in Fig. 10.

However, they are different in the arrival of cluster and subsequent rays as well as envelope

decay.

3. In outdoor environment, the largest scattering, i.e., the highest magnitude does not always

appear at the first path. This phenomenon is clearly illustrated in Fig. 7 and 10.

4. Channels are frequency dependent. It has been observed that the intervening materials, such

as foliage and soil, have dielectric properties that are strongly frequency dependent. This in

part explains the difference among those channels. We will further analyze the detail in the

following section.

4 Outdoor Channel Modeling

4.1 Temporal Characterization

In the S-V model, the arrival of clusters is modelled as a Poisson arrival process with a rate A,

while within each cluster, subsequent multipath contributions or rays also arrive according to a

Poisson process with a rate A (see Fig. 12). Observe Fig. 7-.-10, like in S-V model, multipath

contributions arrive at the receiver grouped into clusters and therefore similar methodology used

in S-V model studies may be also applied to 200MHz, 400MHz, 600MHz and UWB CIR. The time

of arrival of clusters can be modeled as a Poisson arrival process with a rate A, while within each

cluster, subsequent multipath contributions or rays also arrive according to a Poisson process with

a rate A. We define:

" T = the arrival time of the first path of the 1-th cluster;

" Tk,l = the delay of the k-th path within the 1-th cluster relative to the first path arrival time

T;

5
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* A = the cluster arrival rate;

* A = the ray arrival rate, i.e., the arrival rate of the paths within each cluster.

By definition, we have -rol = T. The distributions of the cluster arrival time and the ray arrival

time are given by

p(T[T-1 ) = Aexp (-A(TI - T- 1 ), 1 > 0

p(Tk,lI-r(k-),L) = Aexp (-A(Tk,l - 7(k-1),i)), k > 0 (2)

Specifically, we also observed that the A and A are quite different for 200MHz, 400MHz, 600MHz

and UWB CIR. We listed observed parameters in Table 1. As for indoor UWB data, we refer [11.

The higher A and A of UWB implies its exceptional range resolution. Lower A and A of outdoor

UWB than those of indoor means indoor environment typically have a richer multiple scattering.

4.2 Statistical Distribution of Channel Amplitude

In the S-V model, the average Power Decay Profile (PDP) is characterized by an exponential decay

of the clusters and a different exponential decay for the pulses within each cluster. In other words,

the amplitude follows rayleigh distribution. In the IEEE UWB indoor channel model [10], the

clutter approach was adopted (same as S-V model), but a lognormal distribution was suggested for

characterizing the multipath gain amplitude, and an additional log-normal variable was introduced

for representing the fluctuations of the total multipath gain. In this Section we propose that log-

logistic model that would better characterize the multipath gain amplitude for both outdoor NLOS

narrowband and UWB.

4.2.1 Statistic Models

Log-logistic distribution (LLD) [12] is a special case of Burr's type-XII distribution [13] as well as a

special case of the kappa distribution proposed by Mielke and Jonson [14]. Lee et al. employed the

LLD for frequency analysis of multiyear drought durations [15], whereas Shoukri et al. employed

LLD to analyse extensive Canadian precipitation data [16], and Narda & Malik used LLD to

develop a model of root growth and water uptake in wheat [17]. In spite of intensive application in

6
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precipitation and stream-flow data, so far the log-logistic distribution (LLD) statistical model has

never been applied to foliage channel model to the best our knowledge.

This model is intended to be employed on a basis of higher kurtosis and longer tails, as well as

its shape similarity to log-normal and Weibull distributions. PDF for LLD on a basis of different

of p and a are illustrated in Fig. 13. As we shall see that this model provides the best curve fit

compared to lognormal, Weibull and Rayleigh.

Here we use the two-parameter distribution with parameters i and a. The PDF for this

distribution is given by

AX)= e x>0, a>O (3)

where p is scale parameter and a is shape parameter. The mean of the the LLD is

E{x} = el'(1 + a)r(1 - a) (4)

The variance is given by

Var{x} = e2
p{r(1 + 2a)I(1 - 2a) - [r(1 + a)r(1 - a)]2} (5)

while the moment of order k is

1

E{Xk} = aelB(ka, 1 - ka), k < - (6)

where

B(m,n) = X- 1 (1 - x)n-'dx (7)

Similarly, the log-normal distribution [18] is a two-parameter distribution with parameters j

and a. The PDF for this distribution is given by

1 _ 2

f(x)e o2 , x>O,o>O (8)

where p is the scale parameter and a is the shape parameter.

The Weibull distribution, which is named after Waloddi Weibull, can be made to fit measure-

ments that lie between the Rayleigh and log-normal distribution [19].

7
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The Weibull distribution is also a two-parameter distribution with parameters a and b. The

PDF for this distribution is given by

f(x) = ba-bxb-l -(x/a)b, x > 0,a > 0, b> 0 (9)

where b is the shape parameter and a is the scale parameter.

The Rayleigh distribution, whose real and imaginary components are Gaussian, has the PDF

as follows:

f(x) - 2 b > 0 (10)

If a and b are the parameters of the Weibull distribution, then the Rayleigh distribution with

parameter b is equivalent to the Weibull distribution with parameters a = v'2b and b = 2.

4.2.2 Maximum Likelihood Estimation

On a basis of CIR cluster amplitude from 12 different positions, we apply Maximum Likelihood

Estimation (MLE) approach to estimate the parameters for log-logistic, log-normal, Weibull and

Rayleigh models respectively. MLE is often used when the sample data are known and parameters

of the underlying probability distribution are to be estimated [201 [21]. It is generalized as follows:

Let yi, Y2, ", YN be N independent samples drawn from a random variable Y with m para-

meters 01, 02, , m, where Oi E 9, then the joint PDF of yl, Y2, "", YN is

LN(Y10) = fYIe(Y1101,02, " , m)fYlo(Y2101,02,"" , 0.) "fyIo(Yn1,2,"" ,-Om) (11)

When expressed as the conditional function of Y depends on the parameter 9, the likelihood

function is

N

LN(Y0) = 11 fYle( Y kJ 0 1',0 2 '" ,0.) (12)
k=1

The maximum likelihood estimate of 01, 02, , 
9 m is the set of values G1, 92, ", 9 m that maximize

the likelihood function LN(Y19).

As the logarithmic function is monotonically increasing, maximizing LN(Y0) is equivalent to

maximizing ln(LN(Y10)). Hence, it can be shown that a necessary but not sufficient condition to

8
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obtain the ML estimate 0 is to solve the likelihood equation

l In(LN(Y)) = 0 (13)

We obtain / and & for log-logistic, A and & for log-normal, 6 and b for weibull and b for Rayleigh

respectively, which are shown in table 2. Note that due to the very small amount of channel sample

of 600MHz, its analysis have to be ignored. We also explore the standard deviation (STD) error of

each parameter. These descriptions are also shown in table ?? in the form of -z, where x denotes

different parameter for each model. It is obvious that log-logistic model provides smaller STD

errors than those of log-normal.

4.2.3 Goodness-of-fit in curve and RMSE

We may also observe that to what extend does the PDF curve of the statistic model match that

of CIR cluster amplitude by root mean square error (RMSE). Let i (i=1, 2,... , n) be the sample

index of CIR amplitude, ci is the corresponding PDF value whereas 6i is the PDF value of the

statistical model with estimated parameters by means of MSE. RMSE is obtained through

RMSE= n- (C - (14)

where n is the amount of sample index. The RMSE for 200MHz, 400Hz and UWB have been listed

in Table 3. It demonstrates that LLD turns out to be the model that fit the channel data best.

One may also draw the above conclusion from the Fig. 14, which describes the the goodness-

of-fit in curve. The absolute amplitude of clusters have been plotted in terms of histogram. It can

be easily seen that Rayleigh model provide the worst goodness-of-fit compared to LLD, log-normal

and Weibull, so that exponential PDP of the clusters adopted in S-V model can not be applied

in outdoor NLOS environment. Also, Weibull is not a good choice due to the inaccurate kurtosis

and high tails. Compare LLD with log-normal, it is obvious that LLD is able to provide shaper

kurtosis, shaper slope,and lower tail. In other word, LLD provides better goodness-of-fit than that

of log-normal.

Since the above investigations have shown that LLD can better characterize the multipath gain

amplitude for outdoor NLOS narrowband and UWB channels than log-normal, we may suggest an

9
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additional LLD variable to represent the fluctuations of the total multi-path gain. Moreover, similar

to the IEEE UWB model, the phase of each path in outdoor NLOS environment may assumed to

be either 0 or ir with equal probability.

5 Conclusion

In our investigation, we accomplished following conclusions: 1) Outdoor NLOS channels are fre-

quency dependent as intervening materials have dielectric properties that are strongly frequency

dependent. 2) Both narrowband and UWB channels are made up of multipath and time-varying

components. 3) In outdoor NLOS environment, the largest scattering, i.e., the highest magnitude

does not always appear at the first path. 4) The outdoor UWB channels we obtained are similar

in their basic features as indoor models. However, they are different in the arrival of cluster and

subsequent rays as well as envelope decay. 5) The amplitude of channel coefficient at each path can

be more accurately characterized by log-logistic distribution (LLD) other than log-normal, Weibull

or Rayleigh due to the best goodness-of-fit and smallest root-mean-square (RMS).
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Table 1: Temporal Parameters for Channel Models

Scenario A(1/ns) A(1/ns)
200MHz 0.012 0.4
400MHz 0.004 0.128
600MHz 0.002 0.06

Outdoor UWB 0.04 0.8
Indoor UWB Extreme NLOS 0.0667 2.1

Table 2: Estimated Parameters for Statistic Model

PDF Log-Logistic Log-normal Weibull Rayleigh
4 = -3.79907 1 = -3.69473 = 0.0388139

200MHz = 0.43948 = 0.811659 b 1.00543 b=0.04740462M = 0.0517626 em = 0.0550099 E = 0.0027934

= 0.0250518 La = 0.0390963 Lb = 0.00456447
5 = -3.75666 / = -3.61265 & = 0.0447926

400MHz &= 0.482505 = 0.917049 b = 0.903163 b=0.0609159
Et= 0.071783 Em = 0.0795182 La = 0.00458706
E= 0.035901 c = 0.0565477 Lb = 0.0536079
A = -3.30616 = -3.13344 1 = 0.080002

Outdoor UWB & = 0.590192 & = 1.12623 b = 0.765597 b=0. 141188
E = 0.202988 6 = 0.225245 Ea 0.0222858
E= 0.101636 -, = 0.164277 Lb = 0.106023

Table 3: root mean square error (RMSE) comparison between Statistic Models

PDF Log-Logistic Log-normal Weibull Rayleigh
200MHz 5.7016 6.2850 8.8810 9.7562
400MHz 5.9023 6.5635 9.7056 10.3359

UWB 2.1867 2.4756 3.0136 4.8975
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Figure 1: This figure shows the lift with the experiment. The antennas are at the far end of the
lift from the viewer under the roof that was built to shield the equipment from the elements. This
picture was taken in September with the foliage largely still present. The cables coming from the
lift are a ground cable to an earth ground and one of 4 tethers used in windy conditions.
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Outdoor Propagation Channel Modeling in Foliage
Environment

Jing Liang and Qilian Liang
Department of Electrical Engineering

University of Texas at Arlington
E-mail: jliang@wcn.uta.edu, liang@uta.edu

Abstract-In this paper, we study the statistical modeling for the foliage clutter in a slightly different manner, therefore
outdoor non line-of-sight (NLOS) channels in rich scattering provides differences in multipath.
and time-varying foliage environment based on extensive data The rest of this paper is organized as follows. In Section
collected by both narrowband and ultra-wideband (UWB) radars.
The multi-path contributions arrive at the receiver are grouped II, we summarize the measurement and collection of the
into clusters. The time of arrival of clusters can be modeled as data. In Section M, we apply CLEAN algorithm to extract
a Poisson arrival process, while within each duster, subsequent CIR for 200MHz, 400MHZ, 600MHz and UWB signals.
multipath contributions or rays also arrive according to a Poisson Section IV presents the channel model in view of temporal
process. However, the parameters are quite different along with characterization as well as statistic model comparison. We
the frequency. We also observe that the amplitude of channel
coefficient at each path can be more accurately characterized as conclude our work in Section V.
log-logistic distribution (LLD) other than log-normal, Weibull or
Rayleigh due to the best goodness-of-fit and smallest root-mean- I1. MEASUREMENT SETUP
square (RMS). The foliage penetration measurement effort began in Au-

gust 2005 and continued through December 2005. Working
I. INTRODUCTION in August through the fall of 2005, the foliage measured

included late summer foliage and fall and early winter foliage.
The indoor radio propagation channel measurement and Late summer foliage, due to the limited rainfall, involved

modeling has been intensively investigated [11-[3]. If the foliage with decreased water content. Late fall and winter
characterization of propagation channel is known, efforts can measurements involved largely defoliated but dense forest,
be employed at both transmitters and receivers to overcome so it's a rich scattering environment. Because of wind or
the channel effects and therefore improve the communication different temperature in dense forest, it's also a time-varying
performance. As far as military warefare is concerned, lots of environment.
applications are for outdoor activities such as sense-through- The radar experiment was constructed on a seven-ton man
foliage target detection. It is believed that understanding the lift, which had a total lifting capacity of 450 kg. The limit
characterization of outdoor non line-of-sight (NLOS) channels of the lifting capacity was reached during the experiment as
will assist both target detection as well as commercial wireless essentially the entire measuring apparatus was placed on the
communications, lift (as shown in Fig. 1). The principle pieces of equipment

Like indoor environment, the foliage contains a wealth of secured on the lift are: dual antenna mounting stand; two
multiple scattering other than LOS free space. In addition, antennas; 200MHz, 1Kw Amplifier, power supply, pre-amp;
the movement of leaves, branches and even the tree trunks 400MHz, 1Kw Amplifier, power supply, pre-amp; 600MHz,
contribute to the time-variance fading phenomenon. Since the 1Kw Amplifier, power supply, pre-amp; Tektronix model 7704
foliage medium can be completely described by its time and B oscilloscope; rack system; IBM laptop; HP signal Generator;
space varying feature, one can investigate the channel model Custom RF switch and power supply and weather shield (small
based on characterization of the channel impulse response hut). Particularly for UWB signal, a Barth pulse source (Barth
(CIR). Electronics, Inc. model 732 GL) was used. The pulse generator

In our investigation, we will apply both narrowband and uses a coaxial reed switch to discharge a charge line for a very
ultra-wide band (UWB) radars to model the propagation fast rise time pulse outputs. The model 732 pulse generator
channels, as we believe that foliage is composed of interven- provides pulses of less than 50 picoseconds (ps) rise time,
ing materials that are electromagnetically dispersive, which with amplitude from 150 V to greater than 2 KV into any
contributes to the strong frequency dependence of foliage, load impedance through a 50 ohm coaxial line. The generator
and thus a narrowband-wideband study would assist with is capable of producing pulses with a minimum width of 750
the better understanding of statistic property of the channel. ps and a maximum of 1 microsecond. This output pulse width
Narrowband signals have been tried at 200, 400 and 600 is determined by charge line length for rectangular pulses, or
megahertz respectively, while UWB radar emissions are at a by capacitors for l/e decay pulses.
relatively low frequency-typically between 100 MHz and 3 The system was pointing at the specified 250 feet dis-
GHz. Each frequency component in a radar signal will sense tance. For the data we used in this paper, each sample is
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that at a different position the result will be slightly different.
However, illustration at one position is sufficient enough to
describe the characterization.

2x 10,

U
1,5

. 0,,5

-t.5

Fig. 1. This figure shows the lift with the experiment. The antennas are at -2
the far end of the lift from the viewer under the roof that was built to shield 0 20o 4000 8000 8000 10000 12000 14000 16000
the equipment from the elements. This picture was taken in September with Time sample index

the foliage largely still present. The cables coming from the lift are a ground (a)
cable to an earth ground and one of 4 tethers used in windy conditions.

spaced at 50 picoseconds interval, and 16,000 samples were
collected for each collection for a total time duration of 0.5
0.8 microseconds. The accomplished data structure is shown
in Fig. 2. For each frequency band, 12 positions named
'0' ,'2','4','5','6','8','10',' 12','14','16','18' and '20' have been
tested. 35 pulses have been obtained for the transmitted and
received signal respectively at each position. 'EMCO' is the -1
brand name of the antenna horn. 'Background' refers to the
background data taken along the track with the antenna bore DDo 2000 4000 Woo Woo0 oooo 120oo 14o0 1Woo
sighted to the targets. Time sample index

(b)

I Fig. 3. Measurement of 200MHz and 35 pulses average (a) transmitted

Radi Fe;roud pulse (b) received echoes

T i z The complicated multipath and time-varying CIR can be

E 2 4 ,5 8 [ 1012 14 18 18 20 modeled as follows [4]
N T a g tr ( t ) ;:t; a p , ( t - r )( l

3V n

where an and rn is referred to as the amplitude and delay of
Fig. 2. Data file structure the n th propagation path. In order to extract the CIR from our

measurement, the CLEAN algorithm has been used. It was
In the foliage-target data, we fired from each of twelve initially introduced in [5] to enhance radio astronomical maps

positions along the track. The firing was into the foliage at of the sky, and has also been employed in narrowband channel
right angles to the track and these right angle shots are called modeling [6][7]and UWB channel characterization problems
track data, i.e., 'Track'. At all twelve positions along the track, [4][8].
the azimuth angle of the transmit antenna was changed from Our steps involved [8] are:
plus 10 to - 10 degrees to provide radial measurements, i.e., 1) Calculate the autocorrelation of the transmitted signal
'Radial'. R..(t) and the cross-correlation of the transmitted with

III. CHANNEL IMPULSE RESPONSE BASED ON THE the received waveform R,y(t).
MEASURED DATA AND CLEAN ALGORITHM 2) Find the largest correlation peak in Ryv(t), record the

normalized amplitudes apk and the relative time delay 7-A.

The average transmitted and received pulses at position 4 for of the correlation peak.
different frequencies have been illustrated from Figs. 3 - 6. The 3) Subtract R. 8 (t) scaled by ak from R ,, (t) at the time
purpose of average is to remove white Gaussian noise. Note delay 7-k.
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Fig. 4. Measurement of 400MHz and 35 pulses average: (a) transmitted Fig. 5. Measurement of 600MHz and 35 pulses average: (a) transmitted
pulse (b) received echoes pulse (b) received echoes

4) If a stopping criterion (a minimum threshold) on the IV. OUTDOOR CHANNEL MODELING
peak correlation is not met, go step 2. otherwise stop.

Given the transmission, reception and the CLEAN process- A. Temporal Characterization
ing described above, the obtained CIR are illustrated from Fig.
7 to Fig. 10. Note that we plot the absolute value of the UWB In the S-V model, the arrival of clusters is modelled as
channel for the comparison between the outdoor UWB channel a Poisson arrival process with a rate A, while within each
with the indoor S-V model [9] (see Fig. 11). It is shown that cluster, subsequent multipath contributions or rays also arrive

1) Both narrowband and UWB channels are made up of according to a Poisson process with a rate A (see Fig. 12).
multipath components. The time-varying path magnitude Observe Fig. 7,-10, like in S-V model, multipath contributions
implies that fading generally exists, therefore the re- arrive at the receiver grouped into clusters and therefore
ceived pulses are fairly random from one time to another, similar methodology used in S-V model studies may be also

2) The UWB channel we obtained looks similar as the applied to 200MHz, 400MHz, 600MHz and UWB CIR. The
CIR in S-V model shown in Fig. 11. However, they are time of arrival of clusters can be modeled as a Poisson arrival
different in the arrival of cluster, subsequent rays and process with a rate A, while within each cluster, subsequent
envelope decay. multipath contributions or rays also arrive according to a

3) In outdoor environment, the largest scattering, i.e., the Poisson process with a rate A.
highest magnitude does not always appear at the first We define:
path. This phenomenon is clearly illustrated in Fig. 7and 10. p = the arrival time of the first path of the 1-th cluster;4) Channels are frequency dependent. It has been observed * rk, = the delay of the k-th path within the 1-th clusterrelative to the first path arrival time T;that the intervening materials, such as foliage and soil, . A = the cluster arrival rate;
have dielectric properties that are strongly frequency
dependent. This in part explains the difference among A = the ray arrival rate, i.e., the arrival rate of the paths

those channels. We will further analyze the detail in the within each cluster.

following section. By definition, we have r'o = T1. The distributions of the

Page 116 of 134



xI 10'

1 0.3 -
0.1

-0.5 -0.2

-U

-0.4

0 2000 4000 60oo 80o0 10000ooo 10 14o00 - o0 0.5 1 1.5 2 25 3Time sample index Time sample index X 10
4

(a)
4 0-Fig. 7. 200MHz Channel

0.8

0 0,4I0.4
0.2

- 3 0
.............................. ...1........... L......... ................02(6 40D WW W 1o6oo 20D0 14oo IW

Time sample index -0.2

(b) -oi4 - 0515
1 052.5 3

Fig. 6. Measurement of UWB and 35 pulses average: (a)transmitted pulse Time Sample Index

(b) received echoes

Fig. 8. 400MHz Channel
TABLE I

TEMPORAL PARAMETERS FOR CHANNEL MODELS

Scenario A(1/ns) \(1/ns) In other words, the amplitude follows rayleigh distribution.
200MHz 0.012 0.4 In the IEEE UWB indoor channel model [10], the clutter
400MHz 0.004 0.128 approach was adopted (same as S-V model), but a log-normal
60MHz 0.002 0.06 distribution was suggested for characterizing the multipath

Outdoor UWB 0.04 0.8
Indoor UWB Extreme NU6S 0.0667 2.1 gain amplitude, and an additional log-normal variable was in-

troduced for representing the fluctuations of the total multipath
gain. In this Section we propose that log-logistic model may
better characterize amplitude of the multipath for both outdoor

cluster arrival time and the ray arrival time are given by NLOS narrowband and UWB signals.
p(TjTj_l) = Aexp (-A(TI - I- 1), I > 0 1) Statistic Models: Log-logistic distribution (LLD) [121 is

P(?'k,t r(k-1),t) = Aexp (-A(-k,l - (k-1),j)), k > 0 (2) a special case of Burr's type-XII distribution [13] as well as
a special case of the kappa distribution proposed by Mielke

Specifically, we also observed that the A and A are quite and Jonson [14]. Lee et al. employed the LLD for frequency
different for 200MHz, 400MHz, 600MHz and UWB CIR. We analysis of multiyear drought durations [15], whereas Shoukri
listed observed parameters in Table I. As for indoor UWB et aL employed LLD to analyse extensive Canadian precipi-
data, we refer [11]. The higher A and A of UWB implies its tation data [16], and Narda & Malik used LLD to develop a
exceptional range resolution. Lower A and A of outdoor UWB model of root growth and water uptake in wheat [17]. In spite
than those of indoor means outdoor environment typically of intensive application in precipitation and stream-flow data,
more sparse multiple scattering than that of indoor, so far LLD statistical model has never been applied to foliage

channel model to the best our knowledge.
B. Statistical Distribution of Channel Amplitude This model is intended to be employed on a basis of higher

In the S-V model, the average Power Decay Profile (PDP) kurtosis and longer tails, as well as its shape similarity to log-
is characterized by an exponential decay of the clusters and a normal and Weibull distributions. PDF for LLD on a basis of
different exponential decay for the pulses within each cluster, different of ju and a are illustrated in Fig. 13. As we shall
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Fig. 10. UWB Channel
The variance is given by

see that this model provides the best curve fit compared to Var{x} = e 2,{F(1 + 2a)r(1 - 2r) - [](1 + or)r(1 -or)12

log-normal, Weibull and Rayleigh.. while the moment of order k is (5)

Here we use the two-parameter distribution with parameters
IL and a. The PDF for this distribution is given by E ,xk} = ae"B(ka, 1 - ka), k - (6)

__ a

f W -_ __a _ -1X>O, a>O (3) where o

f() ax(l + e"' )2 x ,a>0 ()wee B(m,n) xm-l-X)n-1dx (7)
where M is scale parameter and r is shape parameter. The
mean of the the LLD is Similarly, the log-normal distribution [18] is a two-

E{x} = elr(1 + a)r(1 - a) (4) parameter distribution with parameters u and a. The PDF for
this distribution is given by

Path Magnitude 1
xov27- - -, x>O,u>O (8)

where p is the scale parameter and a is the shape parameter.
The Weibull distribution can be made to fit measurements

3:' path Inlibewethan
1' cluslr that lie between the Rayleigh and log-normal distribution [19].

The Weibull distribution is also a two-parameter distribution
with parameters a and b. The PDF for this distribution is given

___________________ by

f(x) = ba-6Xb-le-/ > 0,a > 0, b> 0 (9)

Fig. 11. An illustration of the channel impulse in S-V model, where b is the shape parameter and a is the scale parameter.
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TABLE 11
The Rayleigh distribution, whose real and imaginary com- ABE 11

ponents are Gaussian, has the PDF as follows:

X _2 PDF Log-Logistic Log-normal
f(X) = e- -2b 7, b > 0 (10) /2 - -3.79907 j = -3.69473

2) & = 0.43948 & = 0.811659
2) Maximum Likelihood Estimation: On a basis of CIR 2= 0.0517626 CP = 0.0550099

cluster amplitude from 12 different positions, we apply Max- E,, = 0.0250518 e, = 0.0390963
imum Likelihood Estimation (MLE) approach to estimate the 4 & -3.75666 = -3.61265&= 0.482505 = 0.917049
parameters for log-logistic, log-normal, Weibull and Rayleigh = 0.071783 e, = 0.0795182
models respectively. MLE is often used when the sample _,, = 0.035901 a= 0.0565477

data are known and parameters of the underlying probability Od= -3.30616 & = -3.13344
distribution are to be estimated [20] [21]. It is generalized as Outdoor UWB E = 0.202988 E, = 0.225245
follows: e_, = 0.101636 = 0.164277

Let Yl, Y2, YN be N independent samples drawn from a PDF Weibull Rayleighbs= 0.0388139
random variable Y with m parameters 01, 02, , ,, where = 1.00543
Oi E 0, then the joint PDF of yl, Y2, " , YN is 20MHz a = 0.0027934 6=0.0474046

6b = 0.00456447
LN(YIO) = fY1o(Y1I01,02, , 0rn)"" fY0(Yn1,02,' , O) a =0.0447926

(11) 400MHz b=0.903163 b=0.0609159
When expressed as the conditional function of Y depends C, = 0.00458706

__________ 6b = 0.0536079on the parameter 0, the likelihood function is a = 0.080002

N Outdoor UWB 6 = 0.765597 ---.141188ca = 0.0222858
LN(YO) = J fY0(Ykl Ol1 02,... , Or) (12) Eb = 0.106023

k=1

The maximum likelihood estimate of 01, 02, ..., 9, is the set
of values 01, 02, j m that maximize the likelihood function demonstrates that LLD turns out to be the model that fits the
LN(YI0). channel data best.

As the logarithmic function is monotonically increas-
ing, maximizing LN(Y10) is equivalent to maximizing TABLE III
ln(LN(YIO)). Hence, it can be shown that a necessary but not ROOT MEAN SQUARE ERROR (RMSE) COMPARISON BETWEEN STATISTIC

sufficient condition to obtain the ML estimate 9 is to solve the MODELS

likelihood equation PDF Log-Logistic Log-normal Weibull Rayleigh
0 200MHz 5.7016 6.2850 8.8810 1 9.7562
50- ln(LN(Y10)) = 0 (13) 400MHz 5.9023 6.5635 9.7056 10.3359

UWB 2.1867 2.4756 3.0136 4.8975
We obtain t and & for log-logistic, ft and 6 for log-normal,

a and b for weibull and b for Rayleigh respectively, which are
shown in table II. Note that due to the very small amount of One may also draw the above conclusion from the Fig. 14,
channel sample of 600MHz, its analysis have to be ignored. which describes the the goodness-of-fit in curve. The absolute
We also explore the standard deviation (STD) error of each amplitude of clusters have been plotted in terms of histogram.
parameter. These descriptions are also shown in table H1 in It can be easily seen that Rayleigh model provides the worst
the form of E, where x denotes different parameter for each goodness-of-fit compared to LLD, log-normal and Weibull, so
model. It is obvious that log-logistic model provides smaller that exponential PDP of the clusters adopted in S-V model can
STD errors than those of log-normal, not be applied in outdoor NLOS environment. Also, Weibull

3) Goodness-of-fit in curve and RMSE: We may also ob- is not a good choice due to the inaccurate kurtosis and high
serve that to what extend does the PDF curve of the statistic tails. Compare LLD with log-normal, it is obvious that LLD
model match that of CIR cluster amplitude by root mean is able to provide shaper kurtosis, shaper slope, and lower tail.
square error (RMSE). Let i (i=l, 2,... , n) be the sample index In other word, LLD provides better goodness-of-fit than that
of CIR amplitude, ci is the corresponding PDF value whereas of log-normal.
6i is the PDF value of the statistical model with estimated Since the above investigations have shown that LLD can
parameters by means of MSE. RMSE is obtained through better characterize the multipath gain amplitude for outdoor

NLOS narrowband and UWB channels than log-normal, we
1 1 nmay suggest an additional LLD variable to represent the

RMSE = 1c - ,)
2  (14) fluctuations of the total multi-path gain. Moreover, similar to

=1 the IEEE UWB model, the phase of each path in outdoor
where n is the amount of sample index. The RMSE for NLOS environment may assumed to be either 0 or 7r with
200MHz, 400Hz and UWB have been listed in Table M. It equal probability.
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50 -different in the arrival of cluster and subsequent rays as well
45 d9a as envelope decay. 5) The amplitude of channel coefficient at

45 Log-k4sigic
40 ...Logr,on each path can be more accurately characterized as log-logistic
35 ... -R~ distribution (LLD) other than log-normal, Weibull or Rayleigh
30. due to the best goodness-of-fit and smallest root-mean-square

25- (RMS).
20 ACKNOWLEDGEMENT

15 This work was supported in part by the Office of Naval Re-10

5 . " ... search (ONR) Grant N00014-07-1-0395, N00014-07-1-1024,
- .... N00014-03-1-0466, and National Science Foundation (NSF)

0 0.05 0.1 0.15 0.2 under Grant CNS-0721515.

(a) REFERENCES

[1] H. Hashemi, "The indoor Radio Propagaion Channel", Proceedings of

=-channel da the IEEE, vol. 81, pp. 943-968, July 1993.
45 - Log-ogiJc [2] A. A. M. Saleh and R. A. Valenzuela, "A statistical Model for Indoor
40. . Logrormal Multipath Propagation", IEEE Journal on selected areas in communica-

--- Wbull tions, vol. SAC-5, pp. 128-137, 1987
5 .. R[3] T. S. Rappaport, "Characterization of UHF multipath radio channels in
30, factory buildings", IEEE Transactions on Antennas and Propagation, vol.

37, pp. 1058-1069, Aug. 1989
[4] R. J. -M. Cramer, R. A. Scholtz and M. Z. Win, "Evaluation of an ultra-

20 wide-band propagation channel", IEEE Transactions on Antennas and

15 Propagation, vol. 50, pp. 561 - 570, May 2002.
[5] J, A. Hdgbom, "Aperture Synthesis with a non-regular distribution of

10 . . interferometer baselines", Astronomy and Astrophysics Supplement Ser,
5 / "1 - . vol. 15, pp. 417-426, 1974.

S0--.. 2 [6] Q. Spencer, M. Rice, B. Jeffs and M. Jensen, "A Statistical Model for
0 0.05 0.1 0.15 0.2 the Angle-of-Arrival in Indoor Multipath Propagation", IEEE Vehicular

AmplibAs Technology Conference, IEEE 1997, pp. 1415-1419.

(b) [7] G. L. Turin, "Introduction to Spread Spectrum Antimultipath Techniques
and their Application to Urban Digital Radio", Proc. IEEE, vol. 68, March

20, 1980, pp. 328-354.
nnel dda [8] J. H. Reed, An introduction to Ultra Wideband Communication Systems,18 - Log-logigc Prentice Hall, 2005.16.. Logrofa

1: ---Abull [9] A. A. Saleh and R. A. Valenzuela, "A statistical model for indoor

14 Rayleigh multipath propagation", IEEE J. on Selected Areas in Communications,
vol. 5. no.2, pp. 128-137, Feb 1987.

12 [10] IEEE 802. 15. SG3a, "Channel modeling sub-committee report final,"

T10 IEEE P802.5-02/490rI-SG3a, Feb 2003.
8 [11] M. -G. Di Benedetto and G. Giancola, Understanding ultra wideband

Radio Fundamentals, Prentice Hall, 2004.
6 ' [12] R. C. Gupta, 0. Altman and S. Lvin, "A Study of Log-Logistic Model
4 in Survival Analysis", Biometrical Journal, 41, pp. 431-443, 1999
2 . - - - . [13] I. W. Burr, "Cumulative frequency functions", Ann. Math. Statist., 13,

£ -_215-232, 1942.

0.3 0.4 0. [141 P. W. Mielke, and E. S. Johnson, "Three-parameter kappa distribu-
Arplitude tion maximum likelihood estimates and likelihood ratio tests",Monthly

Weather Rev., 101, 701-709, 1973.
(c) [15] K. S. Lee, J. Sadeghipour and J. A. Dracup, "An approach for frequency

analysis of multiyear dought duration", Wat. Resour. Res. 22(5), 655-662,
Fig. 14. Goodness-of-fit (a)200MHz (b)400MHz (c)UWB 1986.

[16] M. M. Shoukri, I. U. H. Mian, and D. S. Tracy, " Sampling properties
of estimators of the log-logistic distribution with application to Canadian
precipitation data", Can. J. Statist. 16(3), 223-236, 1988.

V. CONCLUSION [17] N. K. Narda and R. K. Malik, "Dynamic model of root growth and
water uptake in wheat", Indian J. Agric. Engng 3(3&4), 147-155, 1993.

In our investigation, we accomplished following conclu- [18] E. Limpert, W. Stahel and M. Abbt, "Log-normal Distributions across
the Sciences: Keys and Clues", BioScience, 51 (5), pp. 341C352, 2001.sions: 1) Outdoor NLOS channels are frequency dependent [19] W. Weibull, "A statistical distribution function of wide applicability", J.

as intervening materials have dielectric properties that are Appl. Mech.-Trans. ASME 18(3), 293-297, 1951.

strongly frequency dependent. 2) Both narrowband and UWB [20] Devote, Probability and Statistics for Engineering and the Sciences,
Monterey, CA: BrooksiCole, 1982.channels are made up of multipath and time-varying compo- [21] M. Barkat, Signal deteciton and estimation, 2nd, London: Artech house,

nents. 3) In outdoor NLOS environment, the largest scattering, 2005.

i.e., the highest magnitude does not always appear at the first
path. 4) The outdoor UWB channels we obtained are similar
in their basic features as indoor models. However, they are

Page 120 of 134



PUNCTURED BINARY SEQUENCE-PAIR AND
ITS APPLICATION IN RADAR SYSTEM

Lei Xu and Qilian Liang Ting Jiang
Department of Electrical Engineering Wireless Network Lab

University of Texas at Arlington School of Telecommunications Engineering
416 Yates Street Beijing University of

Nedderman Hall, Rm 501 Posts and Telecommunication
Arlington, TX 76010 Beijing 100876, China

Email: xu@wcn.uta.edu, liang@uta.edu Email: tjiang@bupt.edu.cn

I. ABSTRACT such as binary phase codes and polyphase codes. For a phase-
coded waveform, a long pulse of duration T is divided into N

This paper presents new developed code - punctured bi- subpulses each of width T,. Each subpulse has a particular
nary sequence-pair The definitions and the autocorrelation phase, which is selected in accordance with a given code
properties of the proposed code are given. Doppler shift sequence. And the pulse compression ratio equals to the
performance is also investigated The significant advantages number of subpulses N = TITs ; BT, where the bandwidth
of punctured binary sequence-pair over conventional pulse is B 1/T.
compression codes, such as the widely used Barker codes, A common form of phase coding is binary phase coding, in
are zero autocorrelation sidelobes and the longer length of which the phase of each subpulse is selected to be either 0 or 7r
the code which can be as long as 31 so far In the radar radians. Since the binary phase codes are easy to generate, they
target detection system simulation, punctured binary sequence- are widely used in modem radar system. However, when the
pair also outperforms other conventional pulse compression selection of the phase is made randomly, the expected maxi-
codes. Therefore, our proposed code can be used as one of mum sidelobe is only about 2/N of the peak of the compressed
the candidates for pulse compression code. pulse. So completely random selection of the phase, is not a

good idea, and the criterion for selecting the subpulse phases
II. INTRODUCTION is that all the time-sidelobe of the compressed pulse should

be equal and as low as possible. One family of binary phase
Pulse compression, which allows a radar to simultaneously code widely used nowadays that can produce compressed

achieve the energy of a long pulse and the resolution of a waveforms with constant sidelobe levels equal to unity is the
short pulse without the high peak power required by a high Barker code. It has special features with which its sidelobe
energy short duration pulse [1], is generally used in modem structure contains the minimum energy which is theoretically
radar system. The main purpose of this technique is to raise possible for binary codes, and the energy is uniformly dis-
the signal to maximum sidelobe (signal-to-sidelobe) ratio to tributed among the sidelobes(the sidelobe level of the Barker
improve the target detection and range resolution abilities of codes is 1IN 2 that of the peak signal) [10]. Unfortunately, the
the radar system. The range sidelobes are harmful because they length N of known binary and complex Barker codes is limited
can mask main peaks caused by small targets situated near to 13 and 25, respectively [11], which may not be sufficient
large targets. The lower the sidelobes, relative to the mainlobe for the desired radar applications. In [12] [13] [14], polyphase
peak, the better the main peak can be distinguished. codes, with better Doppler tolerance and lower range sidelobes

In the industrial world, pulse compression is one of the such as the Frank and P1 codes, the Butler-matrix derived
significant factors to determine the performance of high de- P2 code and the linear-frequency derived P3 and P4 codes
tection and high resolution radar. For example, a satellite- were intensively analyzed. However, the low range sidelobe
borne rain radar demands very stringent requirements on of the polyphase codes can not reach the level zero either.
range sidelobe level of -60dB [2], a downward looking rain The structure of polyphase codes is more complicated and is
measuring radar requires a range sidelobe of 55dB under not easy to generate comparing with binary codes. Therefore,
the mainlobe level [3] [4], and the air traffic control system we propose and analyze a new kind of code-punctured binary
demands the sidelobe level lower -55dB [5]. sequence-pair, whose sidelobe level is as low as 0 and the

There are two kinds of basic waveform designs suitable for longest length of which is 31 in this paper, and subsequently
pulse compression: frequency-codes, such as linear frequency apply it to radar system. According to the simulation results,
modulation(LFM) codes [6] [7] and nonlinear frequency mod- the new code can be a good alternative for the current used
ulation codes(NLFM) [7] [8] [9]; phase-coded waveforms, pulse compression codes in radar system.
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The rest of the paper is organized as following. Section 2 Theorem 1 Mapping property, if xl(i) = x(-i), Yj(i) =
introduces the basic concept and properties of our proposed y(-i),then sequence-pair (xl, yi) is perfect punctured binary
code. In Section 3, an example of punctured binary sequence- sequence-pair.
pair is given and its properties are investigated. In Section 4, Theorem 2 Opposite to element symbol property, ifx 1 (i) =
the performance of our proposed code is also simulated and -x(i), yi(i) = -y(i),then sequence-pair (xl, yi) is perfect
analyzed in radar targets detection system. In Section 5, some punctured binary sequence-pair.
conclusions are drawn about the punctured binary sequence- Theorem 3 Cyclic shift property, if xl(i) = -x(i +
pair. u), yj (i) = -y(i + u),then sequence-pair (x 1 , yi) is perfect

III. DESIGN OF PUNCTURED BINARY SEQUENCE-PAIR punctured binary sequence-pair.
Theorem 4 Periodically sampling property, if x 1 (i) =

First of all, there are some relating definitions listed here. -x(ki), yi(i) = -y(ki), k and N are relatively prime, then
Definition 1 A sequence-pair (x, y) is made up of two sequence-pair (xi, yl) is perfect punctured binary sequence-

N-length sequences x = (x0,xl,"-,XN-1) and y = pair.
(yo,Yi,",YN-1), In [15], the perfect punctured binary sequence-pairs of

length from 3 to 31 are presented in the Table 1.
N-i

RY(T)= X Y(j+r)modN, 0 < 'r < N- 1 (1)
j=0 IV. PROPERTIES

is called the periodic autocorrelation function of the se- A. Autocorrelation Properties
quence pair, while x = y, the sequence-pair (x, y) turns to
be a one-sequence code. The autocorrelation function is one of the most important

Definition 2 [15] Sequence y = (yo, yi,", YN-1) is the properties that represents the compressed pulse in an ideal
punctured sequence for x = (xO, X1,..., XNix), pulse compression system, because it is proportional to the

matched filter response in the noise-free condition. As pre-

0 j Ep-punctured bits sented in the equation (4) in the last section, the periodic
yJ xj j ENon-punctured bits (2) autocorrelation function of the punctured binary sequence-pair

is
Where p is the number of punctured bits in sequence x,

suppose x = [-1, 1], y is p-punctured binary sequence, (x,y)
is called a punctured binary sequence-pair. N-1 E r=-0modN

Definition 3 The periodic autocorrelation of punctured Rxy(T) = XjYjT)modN 0 otherwise
sequence-pair (x,y) is defined j=0

N-i EXAMPLE
N-1 NThe autocorrelation property of 13-length punctured binaryx ) XY(j+T)dN sequence pair(x,y), (x = (111-111-1-1-1-111-1)
j=0 and y = (1010110000110)), and that of 31-length punctured

When punctured sequence-pair has the following autocor- binary sequence-pair(x, y), (x = (1111 - 1 - 1 - 11 - 11 -

relation property 1111-1- 1-1- 11-1-11-1-1111-111-1)
and y = (1111000101011100001001001110110)) are shown

E =0modN in the Fig.1 and Fig.2.
Rxy(r) = 0 orid (3) As it is known that a suitable criterion for evaluating code

1 0 otherwise of length N is the peak signal to peak signal sidelobe ratio
it is called perfect punctured sequence-pair [ 15]. Here, E = (PSR) of their aperiodic autocorrelation function, which can

Zj= xjyj = N - p, is the energy of punctured sequence- be bounded by [16]
pair. Then binary sequence-pair (x,y) is called a p-punctured
sequence-pair. The energy efficiency of the sequence-pair is [PSR]dB <_ 201ogN = [PSR,ax]dB (5)
defined as

The only uniform phase codes that can reach the PSRma,

E N-p are the Barker codes whose length is equal or less than 13.
= = -N (4) However, the sidelobe of the new code in both Fig. 1 and Fig.2

can be as low as 0. In some other words, the peak signal toDefinition 4 The balance of the sequence x is defined as peak signal sidelobe can be as large as infinite. In addition, it
1 d x = n - nn, while np, n n are the number of is also obvious that the length of the new code can expend to

+ 1' and 1' in x separately. 31 that is much longer than the length of the Barker code.

2
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TABLE I
OPTIMUM PUNCTURED BINARY SEQUENCE-PAIR

Length Sequence Punctured positions Energy 01

(octet) Efficiency(%) .o .

3 6 3 66.67 _____
5 32 3 4 5 40.00 f
5 34 2 4 5 40.00 os

7 162 4 5 7 5T7.14
7 164 4 6 7 57014 f I
9 652 1 234567 22.22
9 760 1234678 22.22 ,

11 3426 4 5 6 8 11 54.54 ,1
IT- 3550 4 7 9 10 11 ---4S.54T-f_. ;

11 ~__ .5 _ _ _
12 7426 1 6 7 12 Is.67to

T 7550 4 5 10 11 66.W

12 7624 3 6 9 12 66.67 (a)
13 16606 247 89 10 13 46.15 ...........
13 17124 5689101213 -4915 0 1-
15 742 5 6 7 9 10 13 15 53.3315 75310 671I011I 13 14 15 3.33 I i
17 351134 46 7 89 10 12 16--17 470 ,17 372142 3 6 8 9 10 13 14 15 17 47.06

19 I7T15412 5 6 9 12 13 14 15 17 19 5T.63.,
19 1724154 5 7 9 10 11 12 15 18 19 213 1
S2 5 6 7 8 9 12 15 16 17 4.00

18 19 i
20 3610556 1 6789 10 1116 17 18 40.09 _WW

19 20 0 2i

21 740531 256789 11 13 14 16 0 K
17 20 21 _ _ _ __ _ _J

21 7563240 3 569 10 12 13 15 17 38.10 - . 0 10 , 0 00' ,
18 19 20 21 Delayit,

E3 57U465T 6789 1113 14 1718 52.1 (b)
21 23

23 37263120 6 8 11 12 15 16 18 20 21 52.1722 23 Fig. 1. Periodic autocorrelation property of punctured binary sequence-pair:

28 1702164566 45 67 10 11 18 19 20 21 57.1PTT4 (a) 13 lengt code (b) 31 length code

24 25
28 1734164226 45891011 18192223 57.14

24 25 The ambiguity function which is usually used to analyze
28 1740465534 4 6 79 10 13 18 20 21 23 57.1424 27 the radar performance of Doppler shift and time delay can be

29 3556415302 4 7 11 13 14 15 16 19 20 . found in [17]
21 24 25262729 oo

29 3642213634 5 7 8 9 11 1214 15 16 18 48.28 y(t-FD) x(s)d"Fs*(s - t)ds A(t,FD) (7)
23 24 26 28 29 y

31 17053411166 5 6 7 9 11 15 16 17 18 20 51.61 0o

21 23 24 28 31 where t is the time delay and FD is the Doppler shift.
31 17 1730 6 7 10 12 13 15 16317 51.61 An equivalent definition can be given in terms of the signal

0 spectrum by applying basic Fourier transform properties

Note: The sequences in the table are presented by octets, 'l' for '+1', '0'
for '-' and punctured positions begins from left to right. A (t, FD) = X*(F)X(F - FD)ej2 FtdF (8)

B. Ambiguity Function The ambiguity function is defined as the magnitude of

When the transmitted impulse is reflected by a moving A(t, FD) [17]

target, the reflected echo signal includes a linear phase shift A(t, FD) IA(t, FD)I (9)
which corresponds to a Doppler shift fd [ 17]. As a result of the
Doppler shift fd, the main peak of the autocorrelation function However, the code used in our paper is sequence-pair, so
is reduced: the transmitting code and the receiving code are not the same.

The ambiguity function can be obtained as following:

[d]dB == llog T fT x(s)x*(s)ds (6) Ypi,(t, FD) = f x(s)e j 21rFDsy*(s - t)ds (10)
Lf x(s)ej2 ,rfTcx* (s)ds

In addition, the SNR degraded and the sidelobe structure is Aair(t, FD) = X*(F)Y(F2- FD)ej2lrFtdF (11)
changed thanks to the Doppler shift. --oo

3
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The ambiguity' /imction is defined as the magnitude ofApan, (t, hD )

Ap,, (1FD) =- IA,(t, P'D) (12)

In addition, assume the punctured binary sequence-pair is
(x, )), xr(t) = x].= x,, (t - ri 7,,) and y(t) = = y,,N ( -

itT.). since the periodic correlation is used instead of aperiodic
correlation in this paper. The AiP'?T.(t..FD) in one period of *

length NT, can be expressed as

A ,,i, (1. Fl) = 7i:7(. ) nTy)* (.s - tT - (NT, - t)) e. Doope Sh'"
0°

C(j2rl"DS)ds + x(S - 71T,)Ys(s - 1T, - t)

C (12,-1n ,) (13)

EXAMPLE

Ambiguity functions of the punctured binary sequence-
pair within length of 13 and 31 used in the last section are
simulated, where maximal time delay is I unit(normalized to
length of the code, in units of NT,) and maximal Doppler shift
is 5 units(normalized to the inverse of the length of the code,
in units of I/NT). The ambiguity functions of 13-length DeW,y ,

long Barker code and 3 1-length long P4 code are presented in
Fig.2 and Fig.3 in order to compare with the punctured binary (b)
sequence-pairs of the same length.Fig.2 and Fig.3 show thatthe sidelobe improvement of the Fig. 2, Ambiguity function of 13-length codes: (a) Punctured binaryFig. an Fi.3 howtha th sidlob imrovmen ofthe sequence-pair (b) Barker code

punctured binary sequence-pair is obvious comparing with
those of Barker code and P4 code when there is no Doppler
shift. The sidelobe of punctured binary sequence-pair can
reach as low as zero. Nevertheless, when there are Doppler
shift and time delay, the ambiguity functions of punctured
binary sequence-pair is not as flat as those of Barker code Without time delay, while the Doppler shift is less than
or P4 code. In some other words, punctured binary sequence- I unit (normalized to length of the code, in units of NT),
pair is, to some extent, less tolerant of Doppler shifts than punctured binary sequence-pair has the similar performance of
P4 code. One of the reasons why the proposed code is not Barker and P4 code that the amplitude has a sharp downward
tolerant of large Doppler shift is that periodic correlation trend. Furthermore, amplitude of punctured binary sequence-
property is used for punctured binary sequence-pair instead pair decreases more quickly than amplitude of the other two
of the aperiodic correlation property which is used for the codes. However, when the Doppler shift is larger than Iother two codes. However, comparing with P4 code, punctured unit (normalized to length of the code, in units of NT,),
binary sequence-pair made up of only three different phases, the performances of these codes are distinguished. On one
is more simple and easy to obtain in the industrial world. hand, the trend presented by punctured binary sequence-pair

C. Doppl/er Shift Performance Without Time Delay is not as regular as the other two kinds of code when the
Doppler shift is larger than I. On the other hand, for Barker

The ambiguity function can be simplified when there is no and P4 code, when Doppler frequencies equal to multiples
time delay: of the pulse repetition frequency (PRF = 1/PRI = 1/T.s)

T. the ambiguity value turns to be zero. Because of these zeros,
1,,,, (0, h)) = r(s - n',)y*- ?iT,)e( 2 n"DS)ds (14) such multiples of the pulse repetition frequency will render

the radar blind [I ]to their velocities. Nevertheless, referring to
However, in Fig.2 and Fig.3, it is not obvious to see the punctured binary sequence-pair, ambiguity values do not go
Doppler shift performance of punctured binary sequence-pair to zero when Doppler frequencies are equal to multiples of
and the other two codes when there is no time delay. The the PRF. Therefore, using the punctured binary sequence-pair
Doppler shift performance without time delay is presented in as the compression code could, to some extent, improve the
Fig.4 and Fig.5. blind speed problem in moving target detection system.

4
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Fig. 3, Ambiguity function of 31-length codes: (a) Punctured binary Fig. 4. Doppler shift of 13-length codes(titne delay- 0): (a) Punctured binary
sequence-pair (b) P4 code sequence-pair (b) Barker code

V. SYSTEM SIMULATION IN RADAR SYSTEM length punctured binary sequence-pair and the same length

As a rule, the following probabilities [17] are of most Baker code. Observe the figure, the probability of miss tAl
interest in the Radar system. of the system using 13-length punctured binary sequence-
I. Probability of Detection, I"D: The probability that a target pair is lower than 13-length Barker code especially when the
is declared when a target is in fact present. SNR is not large. It is in accordance with the result shown
2. Probability of False Alarm, PFA: The probability that a in Fig.4 that when Doppler shift is kept less than I and
target is declared when a target is in fact not present. the time delay is zero, the amplitude of punctured binary
3. Probability of Miss, PAI: The probability that a target is sequence-pair falls more sharply than Barker code. In Fig.6(b),
not declared when a target is in fact present. we plotted the probabilities of miss targets detection of 31-
Note that PAIt = 1 - PD, thus, PD and PFA suffice to specify length punctured binary sequence-pair and those of the same
all of the probabilities of interest in radar system. Therefore, length P4 code. The probability of miss targets detection of the
the above three probabilities of punctured binary sequence- system using 31-length punctured binary sequence-pair is less
pairs in radar system are simulated using Matlab, as shown in than 31-length P4 code especially when the SNR is not large.
Fig.6 and Fig.7. In addition, the performance of the 13-length When SNR is larger than 17 dB, both probabilities of miss
Barker code and 31-length P4 code are provided in order to targets detection of the system approach zero. However, the
compare with the performance of punctured binary sequence- probability of miss targets of P4 code is lower than punctured
pairs of corresponding lengths. In the simulation model, we binary sequence-pair. Comparing both Fig.6(a) and Fig.6(b),
ran Monte-Carlo simulation for 10' times at each SNR value, longer punctured code performs better especially when the
the Doppler shift frequency which is kept less than I unit SNR is not very large.
(normalized to the inverse of the length of the code, in units In addition, we also plotted the probability of detection
of 1INT,) is randomly determined by Matlab, and the time versus probability of false alarm of the coherent receiver in
delay is assumed to be zero. We use threshold detection in Fig.7.
coherent system and the threshold is adaptively determined in Fig.7(a) illustrates performance of 13-length punctured bi-
the simulation. nary sequence-pair and the same length Baker code when the

In Fig.6(a), we plotted the probabilities of miss PM of 13- SNR is 10dB and 14dB. Having the same SNR value such as
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Fig. 5. Doppler shift of 3 1-length codcs(timc delay 0): (a) Punctured binary Fig. 6. Probability of miss targets detection (No time delay, lDoppler shift less
sequence-pair (b) P4 code than 1): (a) 13-length Punctured binary sequence-pair VS. 13-length Ilarket

eode(b) 3 1-length Punctured binary sequence-pair VS. 3 1I-length P4 code

10dB or 14dB in the figure, the PD of 13-length punctured bi-
nary sequence-pair is larger than PD of 13-length Barker code than 1. We also apply the punctured binary sequence-pair to

while the PFA of the first code is also smaller than PFA of the the target detection simulation in the radar system. According

latter code. In some other words, 13-length punctured binary to the simulation results, it is easy to observe that I 3-length

sequence-pair has much higher target detection probability punctured binary sequence-pair has better performance than

while keeping a lower false alarm probability. Furthermore, 13-length Barker code. Similarly, the 31-length punctured

observe Fig.7(a), 13-length punctured binary sequence-pair binary sequence-pair performs better than 31-length P4 code

even has much better performance at 10dB SNR value than when the Doppler shift is kept less than I unit(norializcd

13-length Barker code at 14dB SNR value. Similarly, Fig.7(b) to the inverse of the length of the code, in units of 1/NT,)

shows that the performance of 31-length punctured binary in the radar target detection system. As a result, the general

sequence-pair is much better than the P4 code of same length. conclusion from the results presented in this paper is that

According to the above results, it is easy to see that our newly the punctured binary sequence-pair, which has much longer

provided punctured binary sequence-pair is very promising to code length and better autocorrelation sidelobe property than

be an alternative pulse compression code in the Radar system. the biphase code such as Barker code, and simpler structure
than those polyphase codes such as P4 code, effectively

V|. CONCLUSION increases the variety of candidates for pulse compression codes

A kind of new code-punctured binary sequence-pair and especially for long code.
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1. ABSTRACT harmful that they can mask main peaks caused by small targets

Based on zero correlation zone(ZCZ) concept, the definition situated near large targets. In addition, the cross-correlation
and properties of ZCZ sequence-pair set are given in this property of the pulse compression codes should be considered

in order to reduce the interference among radars when wepaper A inethod is presented to use the perfect punctured choose a set of pulse compression codes, because in the real
sequence-pair together with Hadamard matrix in the zero world
correlation zone to construct the perfect punctured ZCZ , a radar may not work alone, such as in the RSN(Radarsequence-pair set. According to perJormance analys is, perfect Sensor Network).
punctureSZCsequence-pair set has gcordi fooe an ret Much time and effort was put for designing sequences withand cross correlation properties when doppler shi is good autocorrelation and cross correlation properties for radarnot large. The radar target detection system simulation target ranging and target detection. However, it is knownthat for most good binary sequences of length N(N > 13)results also show that perfect punctured ZCZ sequence-pair the attainable sidelobe levels are approximately -/A [2] 13]
outperforms ther conventional pulse compression codes, and the mutual cross correlation peaks of sequences of the
such as the well known polyphase code-P4 code. As aresult, perfect punctured ZCZ sequence-pair set can be good same length are much larger and are usually in the order of
candidates fr pulse compression code. 2I-N) to 3vl(N). Set of binary sequences of length N withautocorrelation sidelobes and cross-correlation peak values

both of approximately V/(N) are only achieved in paper [4].
In addition to binary sequences, polyphase codes, with better
Doppler tolerance and lower range sidelobes such as the Frank

Pulse compression, known as a technique to raise the signal and PI codes, the Butler-matrix derived P2 code and the
to maximum sidelobe(signal-to-sidelobe) ratio to improve the linear-frequency derived P3 and P4 codes were provided and
target detection and range resolution abilities of the radar intensively analyzed in [5] [6] [7]. Nevertheless, the range
system, allows a radar to simultaneously achieve the energy sidelobe of the polyphase codes can not be as low as zero
of a long pulse and the resolution of a short pulse without either. The structure of polyphase codes is more complicated
the high peak power which is required by a high energy short and is not easy to generate comparing with binary codes.
duration pulse [I]. One of the waveform designs suitable for Therefore, based on ZCZ (zero-correlation zone) [8] concept,
pulse compression is phase-coded waveform design that a long we propose the ZCZ sequence-pair set, which can reach zero
pulse of duration T is divided into N subpulses each of width autocorrelation sidelobe during zero correlation zone and zero
T_. Each subpulse has a particular phase, which is selected in mutual cross correlation peaks during the whole period. We
accordance with a given code sequence. The pulse compres- also propose and analyze a method that perfect punctured
sion ratio equals the number of subpulses N = TITs -; BT, sequence-pair together with Hadamard matrix are used in the
where the bandwidth is B -1I/T,. In general, a phase- zero correlation zone to construct the perfect punctured ZCZ
coded waveform with longer code word, in some other words, sequence-pair set and subsequently apply it to radar detection
higher pulse compression ratio, can have lower sidelobe of system. For the performance evaluation of this proposed code,
autocorrelation, relative to the mainlobe peak, so its main an example is presented, investigated and studied in the radar
peak can be better distinguished. The relative lower sidelobe targets detection simulation system in the paper. Because
of autocorrelation is very important since range sidelobe are so of the ideal property performance and good target detection
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performance in simulation system, our proposed new code can of ZCZ sequence-pair set can be employed as:

be another useful candidate for pulse compression application, K-i Z, K- I-I N-1

especially in the RSN. E E R ;+ 0Y10T) Z Y C , (6)
The rest of the paper is organized as follows. Section 2 P=o ,=0

introduces the definition and properties of ZCZ sequence-pair (p # q)
set. In Section 3, the perfect punctured ZCZ sequence-pair set
is introduced, and a method using perfect punctured sequence- According to (7), it is obvious to see that the energy can

pair and Hadamard matrix to construct ZCZ sequence-pair set be kept low while minimizing the autocorrelation and cross

is given and proved. In Section 4, the properties and ambiguity correlation of the sequence-pair set.

function of perfect punctured ZCZ sequence pair set are Then, the ZCZ sequence-pair set can be constructed to

simulated and analyzed, The performance of perfect punctured minimize the autocorrelation and cross correlation of the

ZCZ sequence-pair set is investigated in radar targets detection sequence-pair set and the definition of ZCZ sequence-pair set

simulation system comparing with P4 code. In Section 6, can be expressed:
conclusions are drawn on perfect punctured ZCZ sequence- Definition 2-1 Assume(xi 1 ,, y ))) to be sequence-pair set
pair set. of length N and number of sequence-pair I, where p =

1,2,3,...,N- 1,i = 0, 1,2,.., K- 1, if all the sequences
Ill. TIlE DEFINITION AND PROPERTIES OF ZCZ in the set satisfy the following equation:

SEQUENCE-PAIR SET N-I N- i

Zero correlation zone(ZCZ) is a new concept provided R '( = ' '
(
P

) (q) = 0' 0"
Y Y(i+T)rnod(N) - Y, 04- ...... /(N)

by Fan [81 [9] [10] in which the autocorrelation and cross I=0
correlation sidelobes are zero while the time delay is kept
within the value T- instead of the whole period of time domain. ( AN. for r = 0, p = q

We consider ZCZ sequence-pair set(X. Y), X to be a set of = 0, for -r = 0,p 5 q (7)

K sequences of length N and Y to be a set of K sequences 0. for 0 < [I < Zo
of the same length N:

(")~ ~ ~ ~ ~ X(.1,2 f),1)11Y(j) is called Z(7Z sequence-where 0 < A < 1, then (x:r, is cald,Z eun

WE X p= 1,2,...,K- 1 (1) pair set, ZCZP(N, K, Zo) is a symbol in short.

IV. PERFECT PUNCTURED ZCZ SEQUENCE-PAIR SET

The autocorrelation function for sequence-pair (x 1'.yP)is A. Definition of Perfect Punctured ZCZ Sequence-pmir Set
defined by: Matsufuji and Torii have provided some methods of con-

N-i structing ZCZ sequences in [11) [12]. In this section, we apply

h?.1 p,,() = x,"' (,)) '.0 < r < N-- 1 (3) perfect punctured sequence-pair [13] in zero correlation zone

i=0 to construct the perfect punctured ZCZ sequence-pair set.
Definition 3-1 [13] Sequence u = (u0),uli\ Iu, ) is the

The cross correlation function for sequence-pair (rP,y 1P) punctured sequence for v = (vo,u I.. .N )).

and (j:.,yl), p $ q is defined by:

-0, if j E p punctured bits

N 0 q)-v, if j E Non-punctured bits
C 0-YO (7) = E "i) Y(1)"n '" < 7 < N - 1 (4)= 3i Y(h+r),nodN'U-

i=o Where p is the number of punctured bits in sequence v,

N- 1 suppose vj = (- 1,1), u is p-punctured binary sequence, (it. v)

C (T"(7) = J: 
q ) (P)  0 < T < N- 1 (5) is called a punctured binary sequence-pair.

E. ( Y(2+T)'n0dN' Theorem 3-1 [13] The autocorrelation of punctured
i=o sequence-pair (u, v) is defined

For pulse compression sequences, some properties are of
particular concern in the optimization of any design. They RNv() Vl(i+ ),n d N 

,
O  <  

T-< N - 1 (9)
arc peak sidelobe level, the energy of autocorrelation side-
lobes and energy of their mutual cross correlation [4]. So i=0

the peak sidelobe level which represents a source of mutual If the punctured sequence-pair has the following autocorre-
interference that can obscure weaker targets can be presented lation property:

as maxK It,y.(7-)1,- E Zo(zero correlation zone) for ZCZ E, if Tr 0modN
sequence-pair set. The another optimization criterion for the R,,,0() =o 0 others (10)
set of sequence-pair is the energy of autocorrelation sidelobes
together with the energy of cross correlation. By minimizing the punctured sequence-pair is called perfect punctured

N- i
the energy, it can be distributed evenly and the peak autocor- sequence-pair [13]. Where, E = Yi=o UW(,l ) .... \ =

relation level can be minimized as well [4]. Here, the energy N - p, is the energy of punctured sequence-pair.

2
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If (:u ", ' ,00) in Definition 2-1 is constructed by per- number of sequence-pair in perfect punctured ZCZ sequence-
fect punctured sequence-pair and a certain matrix, such as pair set rests on the order of the Hadamard matrix. The
Hadamard matrix or an orthogonal matrix, where sequence x' in sequence set X and the corresponding sequence

I) 1y' in sequence set Y construct a sequence-pair (x', y') that can
i ( = .2 . be used as a pulse compression code.

y, (-1.0, 1), i = 0, 1,2_._,N - I The correlation property of the sequence-pair in perfect
punctured ZCZ sequence-pair set is:

N- N-iN- p) (q)N-. (i ) (,). R,.,, y(r) = RT,,, (r) = R,,,,(r7nodN 1 ?l ,,j (r,,md'2)
Y_; Y(i+r)tnodN Y'(X-i.)7odI =0 i=0 = I? ,(TrnodN] )RI, (TniodN 2)

EN 2. ifr=0, i=j (

AN, forr=0,p=q = O if 0<IrISN,- 1,:i= (12)
0, for r = O,p 5q (11) 0. if i j
0, for 0 < IT I < Z0 where N 1 - I is the zero correlation zone Zo.

where 0 < A < 1, then (x,P),y,P)) can be called perfect Proof:

punctured ZCZ sequence-pair set. 1) When = j.

B. Design for Perfect Punctured ZCZ Sequence-pair Set
/R ,(0) = E, 11

b, b(0) = i2

Based on odd length perfect punctured binary sequence

pairs and a Hadamard matrix, a perfect punctured ZCZ 1?, 1 (0) = t?uV(O)Rbb, (0) = EN,2 :

sequence-pair set can be constructed on following steps: 0 < ITI < N, - 1,
Step 1: Considering an odd length perfect punctured binary R,,,(r) = 0.

sequence-pair (u, v), the length of each sequence is N1 ( = : (7IidN2) =:

U = 7 .0 , ... , 1, 7, E ( _- 1,1), 2) W hen i 5 j ,
V = VO, V 1 , . , v, E (-1,0, 1),

i = 0 , 1,2 .... N 1  - 1,N , oddR b't'(.1J0 ) (0

Step 2: Consider Walsh sequences set B, the length of the R .,,(0) =R:,,(0 )
sequence is N 2 which is equal to the number of the sequences. 0:
In some other words, a Hadamard matrix of order N 2 is
considered. 0 < 1I < Ni - 1.

13 = (b°,b' . bN2 ), R,,,(T) = 0.

b = (bo,b , ... _ b ' :rl,,,(-) = R .,,,(-)
0 N 2 , ifi=j = R,,.(TnodN)Rb,b(TrmodN

2 ) = 0.

J?b', = 0, if i j j According to Definition 2-1, the sequence-pair set con-

Step 3: Doing bit-multiplication on the perfect punctured structed by the above method is ZCZ sequence-pair set.

binary sequence-pair and each line of Walsh sequences set V. PROPERTIES OF PERFECT PUNCTURED ZCZ
B(Hadamard matrix), then sequence-pair set (X, Y) is ob- SEQUENCE-PAIR SET
tained, Considering the perfect punctured ZCZ sequence-pair set

b'= (bo b.'j, _b 1 ), i = 0, 1......N 2 - 1. that is constructed by the method mentioned in the last section,
,the autocorrelation and cross correlation properties can be

X1 =j I, ,,dN,, 0 <- 2 1 <j5N-110 i < N9 - 1,0 _ j < N - 1, simulated and analyzed with Matlab. For example, the perfect
X = (X

0 X...' N 2 -
1
)  pu nc tu red Z C Z seq u ence -p ai r se t (X ,Y ) i s co n st ru cte d by

= Vjr,oN, b,,oN 2 , 0 K i < N 2 - 1,0 < j < N - 1, 31-length perfect punctured binary sequence-pair (u.v), u

(y . (1111-1-1-11-1-1111-1-1-1-11- 1--11- -1111-
111 - 1).v = (1111000101011100001001001110110) and

Where GCD(N 1 , N 2) = 1, common divisor of N1 and Hadamard matrix H = [1111;1-11-1;11-i-1;1--1-111
N.2 is 1, N = N1 * N 2. The sequence-pair set (X, Y) is of order 4. We follow the three steps presented in Section 3 to
perfect punctured ZCZ sequence-pair set and N 1 I- is the zero construct the 124-length perfect punctured ZCZ sequence-pair
correlation zone Zo. The length of each sequence in perfect set. The number of sequence-pair here is 4 and the length of
punctured ZCZ sequence-pair set is N = N, * N 2 that depends each sequence is 31 * 4 = 124. The first line of each matrix
on the product of length of perfect punctured sequence-pair X = [xx X 2 ;x 3 ;x X 4] and Y = [YI:y2; Y3: Y.41 constitute a cer-
and the length of Walsh sequence in Hadamard matrix. The tain perfect punctured ZCZ sequence-pair (:r I, y'). Similarly,

3
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the second line of each matrix X and Y constitute another

perfect punctured ZCZ sequence-pair (X 2, Y2). 09

:rl = ( 1111- 11-1 - 11-1111- 1i - 1- 1-1 ,
1-1- fll- i11 11 - 11111- 1 -1

ZI

101011100001001001 11011011110001010111

00001001001110] 10111100010101110000100 Fig. tI Periodic autocorretation property of perfect punctured ZCZ scqucnCc.

tOOlllOll1 ): pair set

11 111 1 1111 l-1- 06.

1 1--1....1111111 1 -11 - 11 -1 111 - 111 -1

- 11- 1 I - 11 - 111 - 1 -11 - 11

S - 11- looo- to1- 101- 11 -10000100-

0001 - 101 - 10 11 - 1100010101 - 110000 Z

- 10010(0-11 -10 - 1101--_IlI - 1000 -10

-10 - I1 10000100 - 1001 - 1101 - 10 - 1Ie~ot

I 11 00010l101- 110000- 100100l-1110

-110 Fig. 2. Periodic cross correlation property of perfect punctUred ZCZ
sequence-pair set

Perfect punctured ZCZ sequence-pairs (xi.y1) and (X2,Y2)

arc simulated and investigated in the following parts.

A. Atocrreatio an Crss Crreatin PrperiesIn addition, the sidelobe structure is changed because of the
A. Atocrreatio an Crss Crreatin PrperiesDoppler shift.

The autocorrelation property and cross correlation property The ambiguity function which is usually used to analyze
of 1 24-length perfect punctured ZCZ sequence pair set (X, Y) the radar performance within Doppler shift can be founid in
are shown in Fig.1 and Fig.2 . [14] shown as following:

From the Fig. I and Fig.2, the sidelobe of autocorrelation
of ZCZ sequence-pair set can be as low as 0 when- the time y(t, FD) I r(S)C,

2 05X(S _ t)(18 A(t, F,) (14)

delay is kept within ZO = N1 = 1 (zero correlation zone)
and the cross correlation value is kept as low as 0 during the where t is the time delay and FD is the Doppler shift.

whol tim domin.An equivalent definition can be given in terms of the signal
B. Anibiguit.1fiinction spectrum by applying basic Fourier transform properties

When the transmitted impulse is reflected by a moving

target, the reflected echo signal includes a linear phase shift A (t, FD) / X*(F)X(F - d1 . PUd (15)
which corresponds to a Doppler shift fd [14. As a result"

of the Doppler shift f,j the main peak of the autocorrelation The ambiguityv function is defined as the magnitude of
function is reduced and so as to the SNR degradation shown A(t, FD) [ 14] as following:
as following:

A(t, F1 ) 1- !A(t, FY))- (16)

[dd = 10log-1 (4 (s) ds (13) However, we have ZCZ sequence-pair set in the paper, so
.h.r.~e. 20f 0T : 0 (s)ds the transmitting code and the receiving code are not the same.

4
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The ambiguity function for ZCZ sequence-pair set can be
rewritten as

i m (f J) , ) = P (.s )(3 J2' FD ( ) ( S - t)ds

u"lit,c p. q = 0. 1.2. -- 1

wh crc p, q = 0, 1 2.... K 1 (17)

The ambiguity function is defined as the magnitude of

Al,.i, (t. FD) as following: Delay Tfoop,,, h,f.fl

A;,_- (t! FD) A,, (t, -D) (18) (a)

In addition, assume the ZCZ sequence-pair set are (X, Y),
T(P) E X, E-= z '-rN- :r1V)(t - nTs) and y(') E Y, y(q)

?")0 I$N,(f _T 5), since the periodic correlation is used
instead of aperiodic correlation in this paper. The Ap, ,(t, FD)
in one period of length NT, can be expressed as:

A711,1.(t, Fj))j (19) j, r' J L ,

- I u(')(s - 71 ')v(q)*(s -'nT. - (NT, - t)) .

C 2 P ', _ U ')(s 11T )C(q).

(s -- nT, - t)c(j2-FD4)dsll p.q = 0, 1.2..., K - I Doppershift,

At the same time, when p = q, equation (20) can be used to (b)
analyze the autocorrelation performance within Doppler shift;
and when q f 1), equation (20) can be used to analyze the Fig. 3. Ambiguity function of 124-length ZCZ sequence-pair se: (a)

cross correlation performance within Doppler shift. Equation autocoffelation (b) cross corrclation

(20) is plotted in Fig.3 in a three-dimensional surface plot
to analyze the radar performance of perfect punctured ZCZ
sequence-pair set within Doppler shift. Here, maximal time And the if me l
delay is I unit (normalized to length of the code, in units of presented in the Fig.4.NT,) and maximal doppler shift is 5 units for cross correlation Fig.4(a) illustrates that without time delay, when the
and 3 units for autocorrelation (normalized to the inverse of Doppler shift is less than 1 unit, autocorrelation value of
the length of the code, in units of 1/Nal). perfect punctured ZCZ sequence-pair set falls sharply andthe engh ofthecod, inunis of1IN,).the trend of the amplitude over the whole frequency domain

In Fig.3(a), there is relative uniform plateau suggesting low terend of telampitude oe th whle freuenc domainand ninonnsidlobs, iniizig trge makin efectin decreases as well. Fig.4(b) shows that there are some convex
and uninform sidelobes, minimizing target masking effect i surfaces in cross correlation performance. Observe Fig.4(a)
zero correlation zone of time domain, where Z 0 = 31, -31 < and Fig.4(b), when Doppler frequencies equal to multiples
- < 31. From Fig.3(b), considering cross correlation property of the pulse repetition frequency (PRF = IPRI ulTs)between any two perfect punctured ZCZ sequence-pairs among ofteplereiinfeqnc(PF=1 RI=1T)
the ZCZ sequence-pair set, 124-length perfect punctured ZCZ except Doppler frequency is equal to 2 PRF for cross corre-
theCZsequence-pair set , is-cit toerantof plerfsct whn e lation, all the ambiguity value turns to be zero. That is the
sequence-pair set is tolerant of Doppler shift when Doppler sam asmn ieyusdplecmrsso iaycd
shift is not large. When the Doppler shift is zero, the range same as many widely used pulse compression binary codesidelobe of cross correlation of our proposed code is zero in such as Barker code. In a word, behavior in time delay and
the whole time domain, in response to Doppler shift shown by ambiguity function of

As synchronization technology develops quickly in the perfect punctured ZCZ sequence-pair set can be as good asAs snchoniatin tchnlogydevlop quckl inthe conventional pulse compression binary code.
industrial world, time delay can, to some extent, be well
limited, it is necessary to investigate the performance of our VI. SYSTEM SIMULATION IN RADAR SYSTEM

proposed code without time delay. When t = 0, the ambiguity According to 114], PD(Probability of Detection),
function can be expressed as: PFA (Probability of False Alarm) and PA,(Probability of

fT S Miss) are three probabilities of most interest in the radar
S..... (0, FJ.) = ] r(s - n T )y*(, - nT )e"'7 )ds (20) system. Note that P,1 = 1 - PD, thus, FD and PFA suffice
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Fig. 4. Doppler shift of 124-length ZCZ sequence-pair set(time delay=0):
(a) autocorTelation (b) cross correlation Fig. 6. Probability of detection versus probability of false alarm of the

coherent receiver(No tine delay, Doppler shift less than I) 124-length perfect
punctured ZCZ sequence-pair VS. 124-length P4 code

to specify all of the probabilities of interest in radar system.
Therefore, we simulated the above three probabilities of Fig.6 shows performance of 124-length perfect punctured
perfect punctured ZCZ sequence-pair in radar system in ZCZ sequence-pair and the same length P4 code when the
this section. The performance of 124-length P4 code is SNR is 10dB and 14dB. Within the same SNR value ei-
also provided in order to compare with the performance of ther 10dB or 14dB, the probabilities of detection of 124-
punctured binary perfect punctured ZCZ sequence-pair of length perfect punctured ZCZ sequence-pair are much larger
corresponding length. In the simulation model, 101 times of than probabilities of detection of 124-length P4 code, and
Monte-Carlo simulation has been run for each SNR value, meanwhile probabilities of false alarm of the first code arc
The Doppler shift frequency that is kept less than I unit also smaller than PFA of the latter code. In some other
(normalized to the inverse of the length of the code, in words, 124-length perfect punctured ZCZ sequence-pair has
units of 1INT) is a random variable, and the time delay is higher target detection probability while keeping a lower
assumed zero. Threshold detection is used in this coherent false alarm probability. Furthermore, observe Fig.6, 124-length
system where the threshold is adaptively adjusted. perfect punctured ZCZ sequence-pair even has much better

In Fig.5, the probabilities of miss target detection PAI of the performance with 10dB SNR than 124-length P4 code with
system using 124-length perfect punctured ZCZ sequence-pair 14dB SNR.
are lower than 124-length P4 code especially when the SNR is
not large. When SNR is larger than 18 dB, both probabilities VII. CONCLUSION
of miss targets of the system approaches zero. However, the The definition and properties of ZCZ sequence-pair set are
probabilities of miss targets of P4 code fall more quickly than discussed in this paper. Based on perfect punctured sequence-
perfect punctured ZCZ sequence-pair. pair and Hadamard matrix, a constructing method for the

We plotted the probability of detection PD versus probabil- perfect punctured ZCZ sequence-pair set has been investigated
ity of false alarm PFA of the coherent receiver in Fig.6. along with its properties. The significant advantage of the
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perfect punctured ZCZ sequence-pair set is a considerably [14] M.A.Richards, Fundamentals of Radar Signal Pnocessing. Mc(ira"-

reduced sidelobe as low as zero in the zero correlation zone Hill, 2005.

and zero mutual cross correlation value in the whole time
domain. The disadvantage of our proposed code is that the
number of the sequences in the set depends on the order
of Hadamard matrix that is limited by 2 ' , (k = 0, 1,...).
According to the radar system simulation results shown in
Fig.5 and Fig.6, it is easy to observe that 124-length perfect
punctured ZCZ sequence-pair set has better performance than
124-length P4 code when the Doppler shift is kept less than
1 unit(normalized to the inverse of the length of the code,
in units of I/NT,). As a result, the general conclusion can
be drawn from the results presented in this paper that the
perfect punctured ZCZ sequence-pair set, which has much
better autocorrelation and cross correlation properties than the
optimum biphase codes(longer than 13), whose autocorrelation
sidelobes and cross correlation peak value have been found
to be both approximately vN, can effectively increase the
variety of candidates for pulse compression codes. Because
of the ideal cross correlation properties of perfect punctured
ZCZ sequence-pair set, future work would be focused on the
application of the perfect punctured ZCZ sequence-pair set in
multiple radar system.
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